

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

NEW YORK, AUGUST 22, 1874.
$\left[\begin{array}{c}\$ 3 \text { per Annum } \\ \text { IN ADVANCE. }\end{array}\right.$

IMPROVED MACHINE FOR UNLOADING GRAIN.

 The apparatus illustrated in the annexed engraving is designed for use in connection with grain elevators or warehouses, and its object is to afford a speedy means of removing the grain from the cars in which the staple is transported. The device is claimed to effect a saving of $\mathrm{fr}: \mathrm{m}$ three to four fifths of the labor incident to unloading. The large scoop or shovel shown in the hands of the workmen in the car is provided near it lower edge with hooks, to which is attached the rope leading from the machine. The rope passes between the sheaves of a fair leader, A, the arms of which are hinged to a beam on the floor of the warehouse, so that, when the apparatus is not in use, the portion, A, may be placed in a vertical position or turned back out of the way. When the car comes alongside, the fair leader is turned down horizontally, as shown in the illustration.B is a drum to which are connected the barrels on which wind the cord, C, and chain, D, and also the tappet disk, E, wind the cord, C , and
the whole being the whole being
loose on the shaft to loose on the shaft to
which power is ap. which power is ap. the belt pulley. To theright of the drum is a clutch, F, feath. ered to and revolving with the shaft. G is a piroted bell G is a pivoted bell
crank lever, one arm crank lever, one arm of which embraces the clutch, F, while to the other arm the chain, D, and a rope, H , are secured; the latter passes over a pulley and down through the floor, and carries a weight. The cord, C, is also similarly arranged. As represented in the illustration, the operator is drawing back the shovel, the clutch, F, is now disengaged, the drum, B, revolves freely on the shaft so as to pay out the rope thereon, and the cord, C , is thus wound around its barrel; the chain, D, by the same motion is unwound, while the tappets on the disk, E, striking from below against the pallet, I, on the the pallet, I, on the latch, J, lift the former as each tappet passes. When the workman bas drawn the shovel back to any desired distance, he pushes the edge of the shovel into the grain and slightly slacks the drag rope; this allows the drum immediately to be rotated in the opposite direction by the action of the weight on the cord, C. The result is that, as the tappets on the disk, E, strike the pallet, I, from above, the latter no longer yields, but is carried down thereby lifting the pivoted latch, J, and freeing the end of the lever, G; at the asame time the chain, D, being unwound from its barrel, allows the weight attached to rope, H, to pull the end of the lever, G, outward, thus, as is evident, throwing the clutch, F , into gear with the drum, B . The drum now rotated by the belt wheel winds up its rope, and, in so doing, drags the scoop, guided by the workman, toward the edge of the car, and thus hauls a large quantity of grain out through the door. Meanwhile the chain, D , is being wound up, and its length is so adjusted that, when the shovel has reached the door of the car, the tightening of the chain pulle the end of the lever, G, inward, thus throwing the clutch out of gear; at the same time the latch, J, falls over the lever, as before, holding it in place, when the parts are once more in the position noted in the beginning of the description, and the same operation is repeated
The main drum makes, we are informed, about fifty-five
revolutions and winds up one hundred and forty-five feet of rope per minute, so that the unloading is accomplished very rapidly and with no other labor than that of the single hand guiding the scoop.
In large grain houses several machines may be employed upon one line shaft extending past a number of elevators, and, where necessary, the apparatus may be arranged overhead. Single machines, like the one illustrated, may be used, or double machines, enabling two workmen to operate in one car at the same time, as circumstances may require.
The device is in use in many of the largest elevators of the West, and, judging from the many commendatory testimonials submitted by the inventor, is a valuable labor-saving invention.
It was originally patented by Mr. E. M. Clark, in 1864, and has since had combined with it improvements patented and has since had combined with
by Mr. John Beattie, July 6, 1869.

MACHINE FOR UNLOADING GRAIN

For further particulars, address Mr. T. L. Clark, Newark Licking county, Ohio

Electrical Gas Lighting.

One mode of lighting numerous gas jets is by the electric spark, which is the sudden passage of an electric current through an aeriform body, producing heat, light, and sound. The electricity that produces a spark is of very high tension -that is, it moves with much greater velocity than the ordinary current from a galvanic battery, and hence possesses peculiar powers. This high tension electricity is generated chiefly by friction and by "induction," or the influence from a passing current in an adjacent conductor. It has little quantity, but great penetrating power, and might be compared to a bullet shot from a rifle, if a galvanic current were likened to a large stone thrown by hand. In igniting coal gas by this means, the sparks leap between the points of two wires that are brought together, but do not touch, at the orifice of the burner. The heat of the spark is sufficient to cause the ignition of the gas when this is combined with the air, but if the spark points be entirely immersed in the pure
gas, unmixed with atmospheric air, no inflammation will ensue when the spark passes, because pure coal gas is not an explosive compound, and a lighted candle introduced into an inverted jar full of such gas, is as effectually extinguished as if dipped into water. When the gas is mingled with a certain proportion of atmospheric air, or oxygen, it is readily and powerfully explosive.

The Late Sir Charles Fox.

During the forty-five years of his professional life, Sir Charles Fox was engaged upon works of magnitude in al parts of the world. As a manufacturer and contractor his works include the bridge over the Medway at Rochester three bridges over the Thames at Barnes, Richmond, and Staines; the Shannon swing bridge; a bridge over the Saone at Lyons, and the Great Western Railway bridges. In roofs he executed those at the Paddington station, at the Waterloo station, and at the New street station, Birmingham, and slip oofs for several of heroyal dockyards In railways we find him engaged upon the Cork and Ban don, the Thames and Medway, the Portadown and Dungannon, the East Kent, th Lyons and Geneva (eastern section), eastern section), the Macon and Ge neva (eastern sec den and the Zealand den and the Zealand) lines. H so constructed th erlin water works, in conjanction with others. During his practice under the firm of Sir Charles Fox \& Sons, he was engineer to the Queensland rail ways, the Cap Town railways, th (Cape of Good Cape of Good Hope), the Toront narrow gage rail way, Canada, and, in conjunction with Mr. Berkley, to th Indian Tramway Company. In addi tion to these Si Charles Fox \& Son were engineers to the comprehensive scheme of high evel lines at Bat tersea for the London and Brighton,路 ham, and, Chat , and Dover dhe London and ways, with the ap proach to the Vic toria Station, Pim lico, including the widening of the Victoria railway bridge over the Thames. His two elder sons, Mr. Charles Dougla and Mr. Francis Fox, continue to carry on the firm of Si Charles Fox \& Sons, civil and consulting engineers, London In personal character, Sir Charles was of a most urbane and generous disposition, and to few were these qualities better known, and by none were they better appreciated, than by those-now to be found in all parts of the world-who hav been at one time or other in his employ. Sir Charles was highly esteemed by a large circle of friends, by whom the sad news of his decease, which took place on the 14th of last June, was received with no ordinary sentiment of regret. Engineering.

A Correspondent, Mr. E. P. S., writes from Pskow, Russia, to inform our readers that the Mennonites, who are coming to this country in such large numbers, are not leaving home on account of any religious intolerance, but merely to avoid compulsory military service, from which they were exempt till the emancipation of the serfs abolished the inequality.

Zrientifir ${ }^{\text {Gmmurican. }}$

MUNN \& CO., Editors and Proprietors. poblished weekly at
NO. 37 PARK ROW, NEW YORK

```
O. D. MUNN.
A.E. BEACH.
```


TEAMA

8300
150
2506
250
VOLUME XXXI, No 8. [New Series.] Twenty-ninth Year.
NEW YORK, SATURDAY, AUGUST $22,1874$.

ROTATIVE VERSUS ROTARY ENGINES.
An engine having a crank actuated by a reciprocating pis ton is commonly known as a rotative engine; and one in which the piston is attached directly to the shaft, so that it always moves in the same direction, is called a rotary en gine. Each style of engine has advantages peculiar to it self, but the controversy between the relative merits of ro tative and rotary engines is not infrequently discussed upon improper grounds. We are continually in receipt of letter of the same general tenor as the one which lies before us at present, in which the writer asks: "What percentage of power is claimed to be lost in a steam engine by the piston move ment, and what is the probable percentage which would be gained by rotary motion?" Our readers are doubtless igno rant of the frequency with which these queries are sent to us. Our object, in this article, is to give a general answe on this subject. We have no idea of opening our columns
to discussion on the supposed loss of power in the crank, to diecussion on the supposed loss of power in the crank,
any more than to argumgnts of perpetual motion or methany more than to argumants of perpetual motion or meth
ods of squaring the circle. But there are numerous point of interest in the theory of the crank, and thorough expla nations are only to be found in works which are inaccessible to many of our readers. Hence it may be well to devote a little space to the consideration of these points; and first we will endeavor to state with all fairness the argument of those who contend that there is a loss of power in the use of the piston.

Let the circle, B G H, represent the path described by the center of the crank pin, in one revolution of the engine; le CB be the direction of the crank, and A B, the direction of the
connecting rod, at some given point of the stroke. The connecting rod, at some given point of the stroke. The
pressure on the piston is transmitted through the connecting rod to the crank pin at B, and may be represented in quantity and direction by the line, B D. But the only part of this force which can produce motion in the crank is that which acts tangentially to the circle at B, or perpendicularly to the crank, B C. Tris can be represented graphically by resolving the force, B D, into its components perpendicular and parallel to BC C, by the principle of the parallelogram of forces; and this being done, it appears that B E, less than

B D, represents the part of the force on the piston that tends to move the crank, while the component, B F, acting in the direction of the crank, is apparently lost, as it has no effect direction of the crank, is apparently lost, as it has no effect
in causing motion. Suppose, for instance, that the angle, in causing motion. Suppose, for instance, that the angle,
B A I, between the connecting rod and the guides, is 30°, and that the pressure on the piston is 100 pounds. Then the force tending to move the crank is found (by multiplying the pressure on the piston by the cosine of 30°) to be only 86.6 pounds. At other points of the stroke, the effective pressure on the crank pin will be much less, being reduced to nothing when the direction of the connecting rod passes through the point, C, or when the crank is on the center; and the only point in which the effective pressure on the crank pin is equal to the pressure on the piston is that for which the connecting rod is perpendicular to the crank. Taking the mean of the effective pressures on the crank for successive points, it will be found that,if the mean pressure on the piston during a stroke is 100 pounds, the mean effective pressure on the crank pin will be 6366 pounds. Hence, say those who insist that there is a loss of power in the crank, we have a loss of 36.34 per cent in a ro'ative engine, as compared with a rotary engine of the same dimensions. This, we believe, is a fair statement of the argument usually advanced by opponents of the crank, and as far as the facts are concerned they are correct; it is only the conclusion to which we demur. We will now present our argument, based on these same facts. An examination of the connecting rod, of an engine in motion, will show that the two ends pass over different spaces in a given time. If, for instance, in one stroke, the end of the connecting rod that is attached to the crosshead moves through one foot, the end which is attached to the crank pin, and makes half a revolution in the same time, passes through 1.5708 feet. Now puwer is something more than mere force or pressure, it is force aching through space. Suppose that an engine is placed with its crank on
the center, and steam is admitted : no motion will be pro duced, and consequently there will be no power developed, and no expenditure of steam. But let the piston make a stroke: the power exerted is equal to the force or pressure acting on the piston multiplied by the space passed through, or it will be 100 foot pounds, assuming the data of the preceding instance. During the same time, the crank pin has passed through a space of 1.5708 feet, and the force or press re exerted has been 63.66 pounds, so that the powe 6366 pounds is 100 , or the product of 10 there is no loss ot power in the use of the crank, in theory, all the power ex. power in the use of the crank, in theory, all
erted on the piston being imparted to the crank. The reader who has pursued this discussion attentively will probably be able to detect the fallacy in the argument of the oppo nents of ths crank. It consists in confounding power and
pressure, forgetting that a small force exerted over a great distance in a given time may develope as much power as a arge force exerted over a small distance in the same time. In practice, it is to be expected that the friction of the working parts will absorb some of the power exerted by the piston. Mr. Scott Russell, in his "Treatise on the Steam Engine," gives, as the result of some careful experiment on rotative engines, that the work done amounted to 90 per cent of the power exerted by the pistons. It may be added that this book contains an excellent discussion of the theory of the crank, as well as a careful comparison of the relative merits of rotative and rotary engines.
Another stumbling block in the way of many is the fac that the motion of the piston is continually stopped at the nd of a stroke, preparatory to the commencement of stroke in the opposite direction. Bat it should be remem bered that while one end of the connecting rod is subject to
this reciprocating motion, the other end has a rotary motion always in the same direction. Now it will be found by ob ervation that all single rotative engines are provided with heavy parts, such as fly wheel, disk cranks, and counter weights, which also have a rotary motion when the piston is in action. These heavy parts acquire energy during the stroke to continue the motion past the centers, where the pressure on the piston produces no effective pressure on the crank pin;and it would be easy to show, did space permit, that, by proper attention to the proportion and arrangement of these Leavy parts, all trouble arising from what are known as dead points can be overcome. Indeed, most of our read ers must have noticed that this trouble is only imaginary and does not exist in practice in the case of a well designe rotative engine.
Oar readers must not conclude from the foregoing remark that we intend to induce inventors to give up designing ro tary engines; we only wish to place the matter in its true light. If a practical rotary engine can be produced, one that can compete successfully with our best rotative engines in regard to economy and durability, the advantages of light ness, compactness, and capability of high piston speed are so important as to render its success almost certain. We only wish to dissent from the opinion that, other things be ing equal, the rotary engine is better than the rotative be cause the latter applies the power by means of a crank thereby occasioning a loss, since this is not a fact.

THE FABRICATION OF ANTIQUES.

Apparently the most thriving brauch of manufacture in the Eastis the production of pretended relics of the past gems, coins, statues, ornaments, arms, written documents, verything that archæologists can desire being turned out in quantity to meet the liveliest demand; and so akillfully don that the expertest judges find it difficult to detect the fraud One of the most successful manufactories in Constantinople is devoted entirely to the fabrication of coins of the time of Constantine and his mother, to be palmed off on collectore
and tourists by confederate dealers who profess to obtain them from workmen engaged in pulling down old houses. A Greek monk in Athens drives a busy trade in spurious Greek coins, their composition regulated by such profound numismatic knowledge that much learning and great technical experience are required to distinguish them from genuine antiques. Equal adroitness is displayed in getting rid of his productions, which are never offered for sale in Athens, though it is known that they are sent by special emissaries to Constantinople and others of the larger capitals of Europe. The most successful agents, however, are herdsmen and shepherds of the provinces, who find a ready market among ourists and scientific explorers.
Spurious Mahommedan coins and gems are manufactured throughout the East, particularly in Persia, with surprieing skill and boldness. A coppersmith in Shiraz is said to be able to supply anything of the sort-genuine, of course-that the traveling connoisseur may desire, as much as forty ducats having been paid him for a silver coin made in his own manu. factory to represent one struck for the Khalif Ali. Bagdad sends forth gems on which Sassanian busts and Pehlevi inscriptions are reproduced with masterly skill; their only drawback is the fact that the characters, though admirably done, never admit of being reduced to legible words, much less to sense. The Byzantine coins made at Constantinople have the same failing. Dr. Mordtmann, who exposes these nefarious practices at great length in communications to a German paper, asserts-as evidence of the grave dimensions of the evil and the skill with which even experts are de-frauded-that the great part of a large collection recently purchased in the East by no less a connoisseur than the Count de Gobineau, and described by him in the Revue Archaologique, consists of modern and spurious stones and medals. One of the stones bears an inscription of two words in Pehlevi characters, in which modern Persian, modern Greek, and Mohammedan elements are blended to form a pretended antique! Others of the stones and tablets are flagrantly evident copies of well known rock carvings in Asia Minor.
Special warning is given against a spurious gem fabricated by Persians and now offered for sale in Constantinople for the modest sum of 2,000 francs. The fraud is betrayed by the inscription, which, though handsomely cut, is only a bi of artistic patchwork. The recent swindling of the Berlin Academy by a Greek forger, and the repcrted purchase of a lot of well made Bagdad "antiquities" by the British Museum for $\$ 10,000$, are proof enough that the warning is not uncalled for.

METEOROLOGICAL AND MEDICAL STATISTICS
A Boston scientist has observed that a diminution of at mospheric pressure, indicated by a low state of the mercu rial column of the barometer, not only increases largely the gases set free by putrefactive fermentation, but even cause such gases to be evolved in localities otherwise considered healthy, often manifesting their presence by a nauseating odor in the best portions of cities like New York or Boston This discovery may be unexpected by some pereons; but it is not by others, who are aware that a similar effect of dimi nished atmospheric pressure is experienced in mines. Evolutions of explosive or suffocating gases are always more common when the barometer is low; while the evolution is stopped, and even the gases filling some galleries in the mines will disappear, when the mercury in the barometer ascends. The increased atmospheric pressure which causes the rise in the mercurial column prevents the expansion of the gases in the subterranean caves and crevices, and may n some localities, favorably situated for the effect, pres the gas from the mining gallpry or shaft back again int the recesses whence it was evolved by diminished pressure. All this explains the reason why explosions in mincs seldom or never take place when the barometer is high, but usually when it is low; whence some mining masters always recom mend special care in regard to the use of safety lamps, tc., when the mercury is descending; and at very low states of the barometer, they even stop the working in certain galleries of dangerous mines altogether
We see then how dangers may increase from changes in natural conditions. A change in atmospheric pressure, which here is the inducing cause, is not an isolated illustration of this class. Local changes in gravitation, for instance, will also result in the production of unusual phenomena: such ocal changes are constantly being brought about by the moon, as seen in the ocean tide wave. When at new moon, he combined attraction of both sun and moon, acting i the same direction, diminishes the regular terrestrial gravi tation in a certain locality; and when to this diminished gravitation, a diminished atmospheric pressure adds its in fluence, the terrestrial crust is more easily ruptured, and volcanic gases escape, especially in localities where its weigh is scarcely sufficient to resist the upward pressure of the iquid or gaseous material confined under the solid shel which constitutes the terrestrial envelope. It has indee been observed, in volcanic countries, that eruptions and arthquakes more commonly occur at new moon, and they are especially most common when, at the same time, the arometer-that is, the atmospheric pressure-is low.
That diseases like yellow fever, typhoid fever, fever and ague, consumption, etc., are more common in certain defined regions, and that some of these are confined within given belts of low, moist countries, and that they are com paratively unknown in certain dry, elevated plateaus, situ ated at from 5000 to 10,000 feet above the surface of the ocean, proves that emanations produced by excess of moisture are powerful helps for the engendering of miasma; while a change of wind has often had the most atriking effect in arresting the virulence of an epidemic.
kite tails and telegraph wires.
To keep the telegraph lines free from entangling alliances n a city like New York is no easy task, and the chief of sinners in this respect is the small boy's kite tail. As
though presuming on the service to telegraphy renderad by one of their class in the hands of Franklin, these playthings -of future Franklins, let us hope-are incesaantly takiog liberties with the wires, breaking thereby their own continuity, and endangering the continuity of the messages the wires are intended to convey. To assist the kite tails in this mischievous work, naughty boys tie stones to strings and strips of cloth, and then sling them so that they wind round the wires, and suspend the stones-a perpetual menace to passers underneath. In this way the wires in many neighborhoods are made to resemble the limbs of an Africen prayer tree, with its burden of rags, tags, and strings hung on by pious wayfarers.
The effect is not ornamental, nor does it add to the eff ciency of the wires, especially on rainy days. At almostany moment on the side streets you may see the telegraph men climbing the poles to remove the strings, or reaching for the nuisances with long rods like stout fiahpoles, which they twist among the strings until they are firmly attached, then by main strength strip them from the wires, sometimes at imminent riek of the integrity of the wires and their at. tachments. We never see the operation witbout wondering at its clumsiness. Wby not burn the strings? It would be an easy matter to attach a light to the end of a slender bamboo pole, so that the flame could be alid along under the wire, charring any string or rag it might encounter, thus diswire, charring any string or rag it might encounter, thus dis-
lodging the snarls that are so hard to remove by force. Tbe lodging the snarls that are so hard to remove by force. The
light could be bung, if need be, so as not to touch the light could be bung, if need be, so as not to touch the
wire or in any way interfere with the transmission of messages. A simple hook, or a grooved wheel at the top of the pole, would eaable the apparatus to run along the wire so that it would be no trouble to guide it.

INFLUENCE OF THE EARTH'S FIGURE ON GEOLOGIC CHANGES.

The slow oscillation of portions of the earth's surface, now above, now below, the mean level of the sea, has long been recognized as an occasion of geologic changes, with their attendant alterations of climate and consequent successions of living forms. The cause of such oscillations has never been satisfactorily explained. The latest hypothesis comes
from the Canadian geologist, H. Y. Hind, who shrewdly suggests that it may be due to the wryvelike movement of the equatorial bulge which gives the earth the figure of a squeezed orange.
The reader may not be familiar with the fact-which has been established but a short time, comparatively-that the equatorial circumference of the earth is not a circle, bat an ellipse, the diameter which pierces the earth from long. 14° $23^{\prime} \mathrm{E}$. to $194^{\circ} 23^{\prime} \mathrm{E}$. of Greenwich being a little more than t wo miles longer than the diameter at right angles thereto. This gives on each side of the earth an equatorial ridge fully a mile high, which may have been much greater in earlier geologic epochs, when the crust of the earth was in a more plastic condition.
It is scarcely possible that this element of the earth's figure should form an exception to the universal rule of change, and be immovable. In case it does move, its iufluence would be felt on the elevation and depression of land, especially near the equator; on the simultaneous elevation and depression on opposite sides of the earth; on ocean currents, consequentiy on climate, etc.; on the thickening and thinning of formations to the east and west; on the flow of rivers, hence on river and lake terraces, beaches, etc. The geology of North America tallies singularly well with the effects of such a cause. The successive risings and sinkings of the continent appear to have always taken place very gradually and with a progressive motion to east and from east to west, as though produced by a vast equatorial undulation, moving, with extr

The latest evidences of this great eart
The latest evidences of this great earth wave are seen in the stupendous escarpments which rear their wall-like fronts above the Ontario, Red River, and Saskatchewan plains,
and in the symmetrical terraces and lake beaches so largely and in the symmetrical terraces and lake beaches so largely
developed turoughout the northern part of the continont. developed throughout the northern part of the continunt.
Mr. Hind looks to it, also, to account, in part at least, for Mr. Hind looks to it, also, to account, in part at least, for
the changes which diverted the water of the Greai Lakes to the eastand, sending their drainage into the Gulf of S . Lawrence, instead of the Gulf of Mexico whither it originally flowed, leaving their ancient outlets southward to be filled with drift from 200 to 600 feet in depth.
Should corresponding effects be observed on the southern slope of the "bulge," aad also on the opposite side of the earth during the aame geologic periods, it is possible that geologists may find in the movements of this (now hypothetical) undulation the measure of time which they have been
so long in want of.

OUR SIX LEGGED RIVALS.

It is a remarkable circumstance that those creatures which mimic man most nearly in mental and social development should be nothis nearest allies among the vertebrates, but members of an entirely different order. It is something more than remarkable that they should stand to their order -the articulata-precisely in the same relation that man bears to the order with which he is classed.
Though surpassed in every detail of physical accomplish mentby his subordinates, man nevertheless excels them all in intellectual power and capacity for self-improvement Similarly our six legged rivals, though the least of the ar-
ticulates, are first in grade of development, surpassing the next below them-the bees and the wasps-as man sur. passes the lower mammalia. This in itself is not surprising; but it does surprise one to see them excelling the higher v
tebrates also, and pressing hard upon man's prerogative. ebrates also, and pressing hard upon man's prerogative.
Accustomed to find brain power associated with and Accustomed to find brain power associated with and
measurably related to brain bulk, it is simply astounding to measurably related to brain bulk, it is simply astounding to
discover a few microscopic specks of nerve pulp-the ant's cerebral ganglia-harboring a degree of intelligence such a the infinitely more bulky brain of man alone gives evidence

We have printed a good deal of late in regard to the manners and customs of these interesting creatures, and thint the facts will warrant the position we have taken.
The question is not one of difference between undeveloped reason and a highorder of instinct, but of difference between instinct and instinct, reason anà reason. In the first, which we are too apt to consider an attribute peculiar to the lower forms of life, the ant might possibly be accounted our gu perior. Butants also reason, profit by experience, make ε judicious use of new means for the accomplishing of new ends or the overcoming of new o staclep, and in many ways
exhibita degree of quickwittedness and intelligence which we may look long for among many tribes of man.
The completeness and complesity of the social organization of ant communities, the magnitude and variety of the works which they plan and execute, the perfection of their military and industrial discipline, the evident scope and flexibility of their language, their sympatbetic regard for each other in times of distress or danger, their forethought and calculation, have been celebrated by every observer of insects from Solomon to Belt; and the more they are studied the more do their various civilizations and the
Now we see them
Now and delight us.
Now we see them roaming about as independent warriors or hunters-formic Ishmaelites or Indians-lierce, vindic tive, self-reliant, and marvelously fertile in tricks and traps for the securing of their prey. Again they appear in organized armies, nomadic swarms without settled habitation, like the Tartar hordes of Gengis Khan, marching from conquest to conquest, sweeping all before them. Others are pastoral in their habits and more or less permanent in their habitations. In tewperate regions they rear and maintain,on suitable plants, herds of horey yielding aphides and beetles, which they tend with assiduous care, iransporting them from pasture to pasture, and defending them from their engmies and the elements as zealously as the shepherd does his sheep; in the tropics the same kind offices are performed for domesticated scale insects and leafhoppers, in re turn for the honey-like secretions they emit. Some con-
stitute themselves standing armies for the deferce of plants which yield them subsistance directly or by affording pasturage for their cattle. Others are a scourge to plant life, gathering leaves by wholesale to make hot beds for the cul. tivation of fungi in underground chambers.
The harvesting ant-which provideth her meat in the summer and gathereth her food in the harvest-has been proverbial for thrifty wisdom, certainly since Solomon commended her ways to the sluggard: how much longer, we have no means of telling. Had the wise man enlarged upon the way some of her kind have learned to secure pleity without labor by the enslaving of others-the raiding ants of our correspondent in Arkansas are probably given to the practice-his advice would doubtless have been more highly appreciated by lazy humanity, too many of whom have hit upon the same expedient without the help of revelation.
But wiser than the common harvesting ants are the agricultural ants of Western Texas-the only Simon Pure aud original Grangers-who have solved the transportation
problem, by bringing not the grain but the grain fields to problem, by bringing not the grain but the grain fields to
market. They have learned- possibly through the gradual desiccation of that now almost desert region-that chance productions are but a precarious aupport in a climate like theirs, so they surround their communities with fields of rice grass, which they protect by killing all rival growths, and in due season harvest their crops, doing all by well timed and concerted labor. Could there be a happier illustra. tion of that ideal state of organized industry and mutual helpfulness, which philosophers have dreamed of and en husiasts labored for since Plato planned his Republic? As in Sir Thomas Moore's Utopia (reading ant for man) if care is tak a right to eveergthing; and they do know that, if care is tak n to keep the public stores full, no private ant
can want anything; for among them there is no unequal distribution, so that no ant is poor or in any neceseity; and though no ant has anything, yet they are all rich.
We have seen how all the common attributes of mankind are mimicked by these six legged rivals of ours, to a degree unapproached by any other class of animals. But man, we feeling, higher even than reason. It is the faculty of reverence, the basis of religion, whether manifested in the fetichism of the Fantee or the faith of the Cbristian. This the theologians are wont to declare is shared by no other terrestrial creature. But here comes the French observer
M. Lespés, with a story which disturbs our sole remaining ground for pride of peculiarity, raising the suspicion that ants too may have a religion!
In the nests of certain ants, and nowhere else, there is found a species of blind beetles which appear to be entirely dependent on their voluntary guardians for food and shelter yet make no material return for the kindly services they en joy. To complicate the matter, some of the communitios which they greedily devour the moment the beetles are ex. posed to them. On the contrary when the bzetles are placed
near the nests of the communitiea which possess them, they are straightway fod and cared for most tenderly, and defended as resolutely as the ants defend their own young. Clearly the strongest of natural instincts, appetite, is somehow restrained in the case of these little keepers of asylums for the blisd. What is the restraining influence?
Similar conduct on the part of a tribe of men would be unhesitatingly attributed to a rude sort of religious feeling; and Sir John Lubbock wonders whether something of the kind may not actuate these ante, whether they do not regard their helpless though relatively gigantic wards with a feeling akin to reverence. Is it possible that they have arrived at a stage of development parallel with that of the beetleworshipping Ezyptians?
In our pride of bulk, we despise the ants for their little-影. But suppose they were as big as horsea, proportionely stiong for their size, as thoroughly organized and as intelligent as they now are, where would we be?

SMALL ENGINES AND BOILERS.

A carscry examination of the correspondents' column of the Scientrific American will show that many of our resdersare building model engines and boilers. We on-dea-cr, as quesiions in regard to their proper construction arise frem time to time, to give useful hints; but in the linit it epace devoted to the answers, we have not been able to trét the subject as fully as seemed desirable. We have bowev. r , taken note of the various points arising in connec tion wita this subject, and it is our intention, at an early day, to give some general directions and rules for the proportion ; of small engines and boilers. Many of our readers can red!er us valusble aid in preparing a complete article on the subj: ct, and wo feel contident that they will be glad to help us, when tine way is pointed out.
We d: Aire to receive accounts of the performance of small ngines a d boilers, embracing the following data
Descripiion and dimensions of boilers, manner of setting, and means adopted for heating the water. Size and descrip tion of engine, pressure of steam, number of revolution, and work performed. Amount of water evaporated by the boiler per hour, expressed in cubic inches or cubic feet, also temperature of the feed. Wo hope that those of our readers who have small engines will take note of our request, and let us hear from them as soon as possible.
sCIENTIFIC AND PRACTICAL INFORMATION.
EFFECTS OF TORPEDOES.
Experiments are now being conducted at Cherbourg, France, in order to determine the effects of submarine torpedoes. An apparatus charged with $3,300 \mathrm{lbs}$.powder was suilk to a depth of 50 feet. On explosion a column of water 500 feet in hight was thruwn into the air, and a hulk anchored at a distance of 18 feet from the spot was broken completely in two. The earth at the bottom was torn up, making a hole 40 feet in diameter and about 5 feet deep.

new lazing for pottery.

A kind of lead glazin \boldsymbol{y} is used upon common pottery, the employment of which often causes cases of lead poisoning among the workmen. M. Constantin, of Brest, France, has recently devised a substicute which is said to be much su-
perior and to possess the harduess and inalterability of perior and to possess the harduess and inalterability of
glass. He uses silicate of soda, pulverized quartz, chalk, and a small proportion of borax. This glazing may be col ored green by copper and brown or violet by manganese. It is already coming into use in many of the largest French potteries.

WATERPROOFING LINEN.

Professor Kuhr gives the following directions for this pur pose: Pass the linen first through a bath of one part of sul pate of alumina in ten parts of water, then through a soap bath, of which the soap is prepared by boiling one part o ight colored rosin and one of crystallized carbonate of soda with ten parts of water until the rosin is dissolved. The rosin soap thus formed is to be separated by the addition of one third of common salt. In the soap bath the rosin soap is dissolved, together with one part of soda soap, by boiling it in 30 parts of water. From this bath pass the articles fixally through water, then dry, and calender. Made-up arti cles may be b:ushed with the solutions in succession and be rinsed in the rain. Wooden vessels may be employed.

COMPOUND ENGINE ROCK DRILL

M. Jules Garnier, according to the Revuc Industrielle, has lately devised a modification of the compound engine which he employs with great success in connection with rock drills. In M. Garnier's engine, the two cylinders are placed end to end and the two pistons are attached to the samerod. Two slide valves are so arranged that one serves to admit live steam to the small cylinder, while the other dist:ibutes the steam directly from the latter to the large cylinder. By this means the steam does not become condensed in passages or reservoirs between the two cylinders, and hence power is conomiz $_d$.
The inventor adapts this arrangement to drills which ope rate by compressed air. Ordinarily air at full force is used to drive the drill into the rock, and a second supply is needed to lift the tool back, the latter operation, of course, no requiring so much power as the down stroke. M. Garnier uses the air directly from the compressor to give his power ful stroke, and then exhausts it into a larger cylinder and uses it over again to lift the drill back. The single piston rod is retained working through the partition between the two cylinders. Further details of the machine, which will convey an accurate idea of its construction, will be looked

THE TRANSIT OF VENUS

On the 9th of December, 1874, the planet Venus will pass between the earth and the sun, and will appear as a round black spot traveling across the sun's face. This phenomenon is what is meant by the transit of Venus, and it is espected that by its careful observation data will be obtained by which, generally speaking, we shall be able to measure the distances of the heavenly bodies, their weight, and their dimensions.
As matters now stand, our knowledge of the celestial world in the above respect is not exact, although a scale of measurement has been approximately constructed. The last observed in 1769, gave us data on which our ideas of celestial distances are now ideas of celestial distances aren discovered in the observations, owing, perhaps, to the primitive instruments used. For example, the sun's distance, then estimated at about $92,000,000$ miles, is now believed to be at least 500,000 miles too great. Naturally, the finding of such serious errors has caused great anxiety in the scientific world to make the coming observations perfectly accurate, and hence the transit will be watched with the greatest care by some two hundred observers, stationed in seventy different places where it will be visible: that is, in Northern India, Australia, New Zea land, Mauritius, Japan, etc., but not in the United States.
Now by means of the transit of
Venus, it is Venus, it is expected that we shall be able accurately to measure the distance between the sun and our earth; and with this gage once established, it will be a very easy matter to apply it to the spaces between the orbits of all the other bodies of the solar system.
The most direct and valuable practical result of the determination of the sun's distance is that which enables us to tell the exact attraction of the sun for the moon, and hence to predict the motions of our satel-
lite. Our lunar tables, by the aid of which we can determine longitude, will then be rendered, instead of approximately, absolutely correct. The result will be that the moon will become not only our nocturnal luminary, but a reliable clock, from which the astronomer or navigator can read the time with certain accuracy.
When Venus crosses the sun's face, the observers on opposite sides of the earth will see the planet on different points of the sun's disk. This will be clear from Fig. 1, where S is the sun, E the earth. If three observers, stationed at a, b, and c on the earth, note the transit at the same time, to the first the planet will appear to be at f, to the second at e, and to the third at d. In our second figure are shown the posi-

ions of the planet as regards the sun's disk in the transit o 1874, and also in the transit to happen in 1882 . At northerly stations, Venus will seem to pass along the line $c c^{\prime}$; at southerly posts along $a a^{\prime}$, and at central points along $b b^{\prime}$. The arrow shows the direction of the motion. Now, if we can measure the solar parallax-that is, the distance between lines $a a^{\prime}$ and $c c^{\prime}$-we shall know the angle subtended by any known distance on the earth's surface at the distance of any known distance on the earth's surface at the distance of
the sun, and hence be given the necessary means for the trigonometrical solution of the triangles, and the determination of the sun's diatance
To find this distance, various ways will be used. Observers stationed in both northern and southern hemispheres will measure the lines $a a^{\prime}$ and $c c^{\prime}$. This gives the length of two chords of a circle, from which it will not be difficult to find the distance between them. This is called Halley's method. Then another way is for two observers, widely
separated, to note the exact time when the planet enters and leaves the sun's disk. The difference in the hour and minute recorded will show what effect the separation of the ob. servers has on the apparent position of the planet. This is the principle of Delisle's plan. Besides this, the sun will be photographed, and the positions of the black spot as seen from different places can be afterwards compared. A new instru ment, called the heliometer, will also be used to measure directly the distance of the black spot from the edge of the bright circle of the sun.
It is generally admitted that the United States has shoul dered the most difficult share of the work, not only in appro priating the largest sum, but in accepting the most difficult stations. Of the latter our astronomers take eight-three in the northern hemisphere and five in the southern. The former are at Wladewostock, Yokohama, and in Northern China, the latter at New Zealand, Tasmania, and Chatham Island on the east, and Macdonald Island and the Crozets on the west. Our expeditions rely chiefly on Halley's and the photographic methods, but Delisle's and the direct plans will also doubtless be availed of. The whole transit will be vis ible at all the stations. We have already noted the depar tare of the Swatara, and of the various parties to their dis ant posts.
All the English expeditions, excepting one, which goes to Alexandria, in Northern India, in October, are already en route. They are stationed at Oahu and at Rodenck's and Falkland Islands.
The Germans send four parties to Falkland, McDonnell's, and Kerguelen Islands, in the southern hemisphere. France ends five expeditions-two to Northern China, one to Japan, one to Campbell Island, and one to St. Paul's Island. Russia as twenty-five stations in Siberia. Besides these national reparations, a number of private observations will be taken by parties under Lord Lindsay at Mauritius, and at the ob servatories of Madras, Capetown, etc.

Heat and its Relation to Construction
The present extensive use of iron in building operation necessitates the careful consideration by architects of the molecular changes which that metal undergoes, owing to changes of temperature, and the consequent effect of the same upon the structure. It is well known that a powerful conflagration, occurring in an iron edifice, warps and twists he walls and facings to such an extent as to necessitate heir prompt destruction; while a like casualty, taking place ven in a brick building in which iron beams and girders re employed, is often apt to expand the metal so greatly that walls are dragged out of place and thrown down. Cases have also occurred in which, owing to careless con struction, summer heat and winter frosts have caused serious deterioration in iron fronts and have necessitated al
terations and the application of strengthening devices, inverations and the application of strengthening considerable trouble and expenditure.
The Suilding Neios of recent date contains a camofully prepared article on heat and its relation to construction, which embodies several useful hints and suggestions.
It is somewhat surprising, says our contemporary, that architects and engineers so frequently neglect this expansibility of metal in girders, ribs, columns, etc., and provide no means for their free movement. Sometimes, it is true, the bearings of long girders in bridges are made of sufficient depth to allow for this increase of length; but even in these cases the mere weight of iron and superincumbent loads upon the points of support reader the intended result nugatory, the weight of the iron girder alone often creating so much friction on the bearing surfaces as to overcome the rigidity of the supporting piers or walls, or the cohesion of mortar at certain points. This immovability of the ends of iron girders and joists is often increased by their being clenched or fixed by the weight of wall above, which often improperly is allowed to bear upon the top flanges.
To obviate this, some engineers have contrived movable bearings, more or less effective. One simple method we would suggest. Let each template be of cast iron of sufficient substance and bearing surface, and let it be placed upon an under template of stone or metal, the surfaces being either left smooth simply or brought into contact by a fric tion roller, of small diameter and of the length of the bear ing surface. By this means free dilatation cuuld take place provided, of course, the ends of girders are left a free space of sufficient distance. No weight should be allowed to rest upon the ends of these beams, but in all cases the bearings should be free all round, and may be made as cast iron sockets, built into the wall, or standing out independently
The linear expansion a bar of iron undergoes when heated from the freezing to the boiling point, or from 32° to 212 Fah., is about one 812th of ics length; at higher temperatures, the elongation becomes more rapid. Thus the pro gressive dilatation of wrought iron, as determined by as follows:

$$
\begin{array}{lll}
\text { At } 212^{\circ} . & \text { At } 662^{\circ} . & \text { At fusing point. } \\
1,000,984 & 1,004,483 & 1,018,378
\end{array}
$$

Cast iron rather less.

It may be mentioned here, that the expansions of volume and surface are calculated by taking the linear expansion as the unit, following a geometrical law; thus the superficia expansion is twice the linear, and the cubic expansion three times the linear.
These figures show how sensible a change takes place when iron undergoes an ordinary variation of tempera'ure and it may be said that in all ordinary cases of building this parts. is quite sufflcient to cause serious disruptions of to an ordinary char or beam of even 10 feet long and subject
will elongate more than $\frac{1}{8}$ of an inch-a sufficient modicum to cause fracture in stonework, to snap the thread of a screw, or to endanger a bridge floor or roof truss. When we think of lengths ten and even a hundred times this dimension, the danger of uncompensated expansion or contraction is in reased a thousand fold. In ordinary cases, the margin of afety is really dependent upon the amount of flexibility or elasticity of the parts of a building connected with iron, or to imperfection of joints; yet we should not rest satisfied with such presumptive security.
It would appear that the most promising mode of using ron is in combining it with concrete, brickwork, and other materials; but it appears to us such a combination would be still more advantageous if the iron werecompletely imbedded or encased in such materials.
It appears that there are some substances particularly bad conductors of heat; such are brick earth, composed of a variety of bodies, and porous: porcelain, asbestos, pumicestone charcoal, sand, etc. These substances are, in fact, such bad conductors that a red hot iron ball may be held some time in the hand if it be first coated with one of them. Such materials offer themselves as coverings for iron girders, columns etc., and we do not see why compound materials of a porous kind, as animal charcoal and plaster, should not be applied to such iron work in situ by first filleting the girder or column, or surrounding it with a perforated plating of thin earthenware or metal on which to lay the coating, which could be run as molded work or finished ornamentally. A ining or casing of such materials, molded to the form of the ron to be protected, could also easily be prepared in cast blocks, rebated or grooved together, the external facing being molded to any section.
Animal charcoal should be one of the ingredients in the compound used, as it is one of the worst known conductors. Fire clay lumps could be well treated in this manner, or plas. ering-which materials have been suggested lately by recen English experiments which proved that iron protected with fire clay can withstand a fierce heat and yet remain uninjured in its elasticity, while the brick arching and concrete back ing can resist any amount of heat likely to occur. Wethink, f an air space were left between such casing and the iron, it would provide a still more effectual barrier, though a few perforations would be required in the casing to allow the eated and expanded air to escape. If, also, brick earth mixed with charcoal were used, a still more effectual nonconducting casing would be obtained, and the iron would be comparatively preserved at a moderate temperature. By hus encasing a good conductor of heat in a bad one, the vils of expansion and contraction are avoided, or considera by lessened, and we are thus left the advantage of using in ur construction a material which may aptly be called a "good servant but a bad master."

A FOUR-ANTLERED DEER'S HEAD.

The American Sportsman publishes a description of a remarkable specimen of the deer (cervus Virginianus), the head of which carries four antlers, three on one side and one on the other. The editor of our contemporary gave the head a critical examination, and found that the antlers are located in their natural positions, having a total number of twenty-one tines-eight on one side and thirteen on the other. To the casual observer, no deformity at the base of oither is perceptible, although a minute examination and strict measurement would reveal a elight variation in diame ter at the extreme base. If there is any enlargement, how ever, it is indicated, if not visibly shown, above the burr.

The enlargement, if any exists, is so slight as only to be detected by the most skilled eye. At this point of the pedicel there appear to branch out three distinct antlers with tines. One very remarkable feature, as will be noticed in the engraving, is the fact that on either side of the head there projects from the burr a small tine, the one on the left resembling in siz and shape a large tooth. On the right side can be seen, between the burr and the brow antler roper, an additional tine.
The engraving very faithfully represents a significant fact in connection with these horns, namely: the extreme points of the brow antlers curve naturally toward each other, while in other species they are quite erect.

To avoid explosions with hydrogen generators, adapt a safety jet made of disks of wire gauze placed in the delivery tube between plugs of cotton wool.

MODERN GERMAN ARTILLERY.
Our engraving represents a 10 inch 22 tun cast steel gun, manufactured by Krupp, the celebrated founder of Essen, Prussia, and now in use in the German artillery service for coast defence. The arm is made of two layers of rings or hoops over the barrel, and fires a shell of 423 pounds, with a charge of 66 pounds of powder, at 1,200 yards, through an 8 inch armor plate. The illustration shows the gun mounted in a sea fort, and resting on a thick bed of concrete so as to fire over an earth breastwork 40 feet thick, the muzzle of the
sufficient to fight a 10 inch gun, and for a long time can fir once every $1 \frac{1}{2}$ minutes, or about 40 rounds per hour.

NEW GEOLOGICAL DISCOVERY.

During the recent voyage of the Challenger, a discovery has been made, the significance of which must strike every one who gives the matter even a passing thought; but to those who possess a knowledge of chemistry or geology this discovery is of peculiar interest.
In sailing from Teneriffe, off the west coast of Afriea, to
the depth and the character of the dredgings. When worked on the 1,500 fathom ridge, the dredge brought up globiger ince ooze, multitudes of minute shells, and fragments of coral, the whole, with the exception of a few silicious sponges, being composed mainly of carbonate of lime. As the depth increased, the proportion of these shells regularly diminished, until in the deep water they had altogether dis appeared, and the dredgings then consisted of a fine, red mud which did not effervesce with acid. This red colored deposit of the silicates of peroxide of iron and alumina was met with everywhere all over this vast submarine plain; everywhere it had the same unmistakable appearance; it could not, therefore, be the fine sediment brought down by rivers and carried out to sea, slowly settling in deep water, for then it must havediffered in different localities; the ab sence of currents, too, as well as the great extent of the deposit, precluded this view of the origin. Another remarkaposit, precluded this view of the origin. Another remarka-
ble feature of this area was the absence of those pelagic ble feature of this area was the absence of those pelagic
shells which are littered in such numbers over allother parts shells which are littered in
of the bed of the Atlantic.
How, then, was this gradual disappearance of shell to be accounted for? Why was it that on this red mud area the shells of those animals that frequent surface waters were not found, since, when these creatures die, their shells must in evitably fall to the bottom? Whence came this enormous accumulation of impalpable clay ?
Air dissolved by water is richer in oxygen and carbonic acid than the air of the atmosphere. The ratio of the car bonic acid to the total amount of dissolved gases is greater in water taken from a depth than in surface water
If, to the depth of 3,000 fathoms, the amount of carbonic acid keeps on increasing, relatively to the other dissolved gases, in a ratio at all comparable with that indicated by the foregoing analyses, it is easy to see that the water at this depth, under such enormous pressure, must be capable of dissolving a largequantity of those solid substances which, like carbonate of lime, are soluble in water containing carbonic acid. It is clear, too, on account of both the pressure and the amount of carbonic acid being less, that water near the surface must possess a much feebler solvent power than water at a great depth. This being the case, we should expect to find more limesecreting organisms in the shallower than in the deeper parts of the ocean; now, as has been seen, this is exactly what was found by the explorers in the Challenger.
Under these circumstances, Professor Thomson concludes that this vast deposit of fine red clay is neither more nor less than the insoluble portion of myriads of shells, the residue, in fact, of a chalk formation now dissolved.
It appears then that, justas the higher regions of the Alps or the Andes are buried beneath a pall of eternal snow, so the higher regions of the sea bed are covered by a layer of grayish white ooze, prolific in organisms whose vacated shells will one day form chalk; and just as at the edge of the snow sheet the glacier melts a way into a liquid, ocean-seeking stream, so, where the chalky covering of the sea bottom descends into submarine valleys, it descends into ocean, leaving behind it the red mud, like a terminal or bottom moraine. Suppose, now, that a geologist should come across an ancient ocean bed, undisturbed by volcanic eruptions and undefaced by denudation : he would expect to find, on the higher levels, chalk or limestone of some sort, and, as he descended into the lower plains, that the rocks would gradually lose their calcareous character, passing from chalk to argillaceous limestone, from that to a calciferous slate, and finally into slate containing no lime whatever.
There is every reason to believe that the fine red clay accumulation is but incipient slate rock.
If, then, the great bulk of these rocks be removed from the category of mechanically formed, into that of chemically formed, or of organic, rocks, it will appear that geologist have been in the habit of underestimating the importance of organic processes as geological agents. We will no longer be able to affirm with confidence, of a single grain of the commonest materials found on the earth's surface, that it has not at one tine or other been associated with the mani festation of those mysterious forces which we call living festalion thon Our globe Mo bol or mausoleum. Man has been called a plagiarism from oxen and sheep; but his house, whether it be of mud or of mar-
ble, is equally a plagiarism from the deserted dwellings of the invertebrata.
The tendency of modern geology has been to break down the well marked divisions into which the older geologists were wont to parcel out past time. The old notion, which in some measure still clings to the terms Devonian, carboniferous, cretaceous, etc., was that of a distinct period in the history of the earth. Each of these epochs was conceived to have begun and closed before the succeeding era began. In this way the world was believed to have passed through so many stages, in each of which only rocks belonging to so many stages, in each of which only rocks belonging to
that particular formation were deposited anywhere on the that particular formation were deposited any where on the
earth's surface. Thus, all the rocks of the gneiss were thought to have been formed before the lowest of the Cambrian began to be laid down; similarly with the succeeding silurian and Devonisn systems. Now, however, these terms are used without reference to time, and we think of systems, widely separated according to the old method, being formed simul. neously. The chalk age was formerly supposed to have come to an end at a period long prior to man's appearance on the earth, but the researches of Carpenter, Thomson, Huxley, and others have established the 'continuity of the chalk," and shown that a fauna, very similar to, if not identical with, that of the chalk, inhabits the Atlantic at the present day. The discovery of this red clay seems to point to the continuity of those ages when slate rocks were supposed to
have attained a maximum, that is, of the Cambrian and silu ian formations.
Chalk deposits and coral reefs are, by a process of meta morphosis, converted into crystalline limestone, and by the action of sea water even into dolomite. Granite and other so called primitive rocks bave been shown to be in many cases only metamorphosed sedimentary strata, so that we are unable to suy in what particular line the recurring cycles of geological operations began; nor, on this account, can we assert, except in the case of epecies which have become extinct, that the fauna of any preceding differed from that of the present age.
When this red clay comes to be slate, the only traces of life it can exhibit will be derived from silica-secreting organisms of a low type, like those doubtful appearances in older slate rocks which have been described as fossils. It is there fore altogether unwarrantable to regard this low type as the sole, or even prevailing, form of life during the time when these rocks were formed; nevertheless, there have not been wanting supporters of this view.
For aught, then, that geology can say, while the oldest rocks of Britain were being laid down in 3,000 fathoms of water, far away silurian man may have been cultivating vines on the fertile slopes that flanked the volcanoes of the period.-A. S. Wilson.

Cartespouterce.

Hardening and Tempering Tools.

To the Editor of the Scientific American:
It has been with no inconsiderable degree of interest that I have read Mr. Josiua Rose's several papers, published in your recent issues, treating on machinists' tools and their treatment in forging and tempering for specific purposes. He prefaces his remarks on tool hardening, in his fourth paper (in your issue of July 11), with the remark: "' i 'he degree to which a tool may be hardened is dependent in a great measure on its shape;" and he states what particular shapes or forms of tool require special treatment, in forging and tempering, to render them of maximum utility. With very great clearness, he sets forth the practice of lowering the degrees of hardness by watching the hue assumed by the polished surface of the tool that had been immersed in water at a " moderate red" after it had been reheated, or allowing that part of the tool that had not been immersed to impart its heat to the part that had been immersed to "draw the temper," or obtain the required degree of hardness or tenacity : while in other specific cases, he states that tools require to be "as hard as fire and water can make them." His geveral papers have evinced considerable practical know-
ledge, and he evidently writes his experience with great ledge, and h

I would not now have obtruded upon you had I not noticed, in your issue antedated Auguat 1, a communication from Mr. John T. Hawkins, in which he makes an extract from one of a series of lectures he had delivered to the en. gineer class at the Annapolis Naval Academy, in 1868. "It is safe," he had stated in this lecture, " to say that a cutting tool cannot be too bard for any purpose whatever, so long as the edge will not crumble or break up. "Mr. Rose, in bis paper, says: "It is undoubtedly advantageous to make the strain of the cut," and enumerates the several steels (with the makers' names) capable of such treaiment. Mr. Rose, treating bis subject in quite a masterly manner, states that tools for particular kinds of work require to be "as hard as fire and water can make them," while the temper of others, for other special service, should be "lowered in temper" (hardness) "to a light straw colcr, which leaves them
stronger than they would be if hardened right out," that is, stronger than they would be if hardened right out," that is,
changing the condition of the tool by sudden immersion and allowing the tool to remain in the fluid until cold or of a temperature equal to that of the flaid, for he also states (and correctly) that the "chill should be taken off the water." Mr. Rose is evidently giving the result of his experience, for the benefit of those who have not had the varied experience he evinces in his papers on tools and their treatment under the elements of fire and water. His language is plain; he makes the object
language.
Steel or iron, immersed in water at a "moderate red" or Steel or iron, immersed in water at a "moderate red or
white heat, hardens. In this Mr. Rose and Mr. Hawkins are white heat, hardens. In this Mr. Rose and Mr. Hawkins are
agreed; but Mr. Hawsins states that Mr. Rose makes his "greatest oversight" in the final operation of drawing the temper, and adds that to "give simply a certain color to a tool is the least of what is required to be known or observed." By whatever chemical action or cause the various hues appear, that guide the operative in tempering tools, it is doubtless a natural law or sequence, and, as such, is subject to conditions. The diffsrent hues will appear, faster or slow $\in \mathrm{r}$, which alike are subject to conditions of degrees of temperature at which they commence to evolve, rapidly at high, and gradually at low, tempe
I have failed to see where Mr. Rose has made his greatest oversight. Mr. Rose states: "While he who has been accustomed to the use of tools properly forged and hardened right out, upon entering another shop where the tools are
overheated in forging and underhardened to compensate for it, finding he cannot," etc. Mr. Hawkins says: "If a tool be dipped at the lowest temperature at which it will harden at all, it will be harder when ready for use than if dipped at any higher temperature, if required to be drawn at all." Here the gentlemen in question evidently mean the same thing, namely, that low temperatures are best for tempering
tools. Each seems to regard the color evolved during the process of tempering tools as important. Still while Mr Rose speaks of positive colors, Mr. Hawkins treats of cond Rons. Mr. Rose treats thincs as they are and as they appea to every obstrver, and advises the easiest means to the end.
Mr. Hawkins writes of films of oxide and conditions neces sary to produce them, as if they were negative or absent Mr. Rose, on the contrary,mentions them as ever present an attendant upon the operative for him to avail himself of.
Many tool dressers there are who regard the hues evolved in the process of drawing the temper as the steel maker or iron maker does those evolved or emitted by the spectro scope, while watching to shut off the blast at the proper in stant of time; and it seems that the hues evolved in tem pering tools is so regarded by Mr. Rose. The hues will ap pear sooner in a thin piece of metal having the same temperature as that of a thick one; but these differ in hardnes or tenacity if immersed at the same instant of time. A thin piece of metal will harden more thoroughly than a thick one and will differ in degrees of hardness. I hope that you may deem my cr ticism worthy of a place in your paper.
Trenton, N. Y.
Juan Pattison, C. E

To the Editor of the Scientific Americar
Some months ago I referred to a phort line of three feet gage railway which was then being put in operation between Worcester and Shrewabury; and since that time I have watched with much interest the working of the steam car which have been running on the line. On account of the heavy grades, one hundred and sixty feet to the mile, it has been a pretty severe trial for these machines, and they have stood the test remaikably well; but I think that a slight modification in their construction would render them far more durable and efficient. It was demonstrated practically and in a most thorough manner, seventy years ago, that the steam engine was applicable to the hardest kind of locomo tive work. Where Oliver Evans propelled his mud scow, weighing sixteen or eighteen tuns, over the sand, from his shops along the bank of the Schuylkill, a distance of some two miles, by the power of its own engine-which was about five horse-it was sufficient proof that the thing was quite feasible.
During these seventy years since that exploit of Evans the thing has been verified in every possible way; locomotives have been constructed in every conceivable form: with boilere vertical, horizontal, and both combined; with one, two, three, and four cylinders; with cylinders vertical, horizontal, and slanting, with cylinders placed inside as well as outside of the boiler, with cylinders of unequal size, with cranks between and outside of the drivers, etc. And the result of all this long and costly experience is our present locomotive, an ideal at once of simplicity, symmetry, beauty, and efficiency; and it certainly seems that a model which is the outgrowth of such an ordeal, and which has proved so so eminently satisfactory and efficient for the whole of the immense railroad work of the world, ought to be more of a guide for those who are engaged in making steam cars traction engines for whatever purpo e of locomotion.
The great efficiency of oar present locomotive is doubtless
chiefly due to its boiler. It geems to be the only plan which chiefly due to its boiler. It seems to be the only plan which
possesess so perfectly all of the qualities needed for locomopossesees so perfectly all of the qualities needed for locomo-
tive work. It is simple, compact, accessible for repairs, has vast generating power; all of its parts exposed to intense heat are deeply covered with water, and, of course, it may be constructed of any desired strength. Its center of gravity is low, and this part is an important item in the construction of all locomotive engines.
I believe that if makers of steam cars or traction engines of any kind would adopt precisely thistype of boiler for the foundation of their machines, and then make and correct their running gear in as thorough and symmetrical a manner as is the practice of our best locomotire builders, we sbould see far better results in this line of engineering. The common upright boiler, tbough an excellent boi.er for cer
tain uses, is unsuitable for first class locomotives. If made tain uses, is unsuitable for first class locomotives. If made
short, the tops of the tubes are too much affected by the intense heat riquired to maintain the 120 or 150 lbs. to the square inch, which is necessary to do the work; if made long, the center of gravity is too high; if made with an annular steam chamber above the top of the tubes of sutticient ca pacity, this also brings the center of gravity too $\mathrm{h}^{\circ} \mathrm{gh}$, and also renders the top of the tubes unhandy for repairs. In either case the boiler lacks generating power.
I have much confidence, as a matter of economy, in the idea of making the cylinders of locomotives of unequal capacity, say in the proportion of three or four to one, the amall cylinder exhausting into the large one through a su perheater, but so arranged that direct steam may bs used in both cylinders whenever an exigency requires. Our present locomotives might be easily arrunged in this way without
affecting their style at all. In passenger and express work especiaily, considerable economy would doubtless result from this change.
F. G. Woodward.

The Zodiacal Light.

To the Eiditor of the Scientific American:
The erroneous assertions made by one of your correspondents (page 371 of the number for June 13), in regard to the zodiacal light, ought not to remain uncorracted. He says: "The zodiscal light is not on two sides of the sun, ncither is it all around the sun; but, on the contrary, it is
ever on one side of the sun only, his hinder side, if you will," etc. This error proczeds from the fact that he judges only from its appearance in our latitude, where we see this phe-
nomenon distinctly only in April and May after sundown, and in October and November before sunrise. If this were the case over the whole earth, his assertion might have som oundation; but as in the southern hemisphere it is not visi ble at the periods stated, but only distinctly seen in April and May before sunrise, and in Octor and November afte unset (exactly at the very times that it is invisible in our northern hemisphere), the assertion thatit is only at one side of the sun falls to the ground.
Between the tropics this phenomenon shows itself the whole year roand, every morning and evening, with great splendor. Humboldt states, in his "Cosmos," that in the highlands of South America he watched it morning and evening, and observed that it sometimes varied in brilliancy, and often equaled in luminosity the brightest epots of the Milky Way; sometimes it was weaker, but it was always there whether the observer was on land, or on the mountain tops, or at sea, on shipboard.
Some account of the latest observations between the tro pics were furnished by Chaplain Jones, of the United State Navy, who observed it in the years 1856-57 from the glevated equatorial region in which the city of Quitois situated. His observations verified the fact that the light is entirely con fined to the region of the zodiac; that it was very strong in the central band and broadly diffused at the sides, where it it gradually faded away ; however, a boundary line between he stronger and weaker portions was quite distinct.
He not only saw the light every night, but at midnight at both sides of the borizon, in the east and in the west a the same time; and during favorably clear nights, it extended as a broad, luminous arch over the zenith, entirely from one horizon to the other, having a pale white luster, and breadth of about 30°
In high northern and southern latitudes it is never visible as the ecliptic is too much inclined to the horizon: in the temperate zone, it is only visible in those periods of the year in which the zodiac is as nearly perpendicular to the hori zon as porsible. In the northern hemisphere, this is the case in April and May, at evening, and in October and No vember, at morning ; and in the southern hemispbere, the cases are reversed. At other seasons, our atmosphere ob structs the diffused light from reaching our eyes, as it is too far from the zenith, and this is the sole reason that we do not see it always, as is the case between the tropics. In De cember, however, it may be faintly observed, both morning and evening, even in the latitude of New Jersey
The discovery of Professor Wright that it is caused by the reflection of solar light from solid meteoric material, com bined with the above observations, proves that this zone of meteors extends beyond the earth's orbit, and that the earth moves among them. It is certain that they revolve around the sun, so as to counterbalance solar gravitation, and it is highly probable that, in regard to their orbits and velocity, they are subject to Kepler's laws. In the course of ages, their mutual gravitation causes some of them to combine, and so their number must diminish; while also, from time to time,the earth, Mars, Venus, and Mercury appropriate others of them. In regard to our earth, at least, we know that the fall of meteorites is not a very uncommon occurrence. It is probable that our whole planetary system has been made up in this way, and that the different belts of meteors, the zodiacal light, the asteroids, etc, constitute what there is now eft of the material from which sun and planets were primitively formed by the action of universal gravitation. New York city.
P. H. Vander Wetde.

The Business Outlook

In a time of droutb, it is aqfe to predict rain, because we know that in the economy of Nature there is an inevitable law of reaction; and in a period of business depression, we known that it cannot always last, because the elements exist which are certain to bring about renewed activity These elements are manifest and visible all around us. The great staple products of grain and cotton, to say nothing of other crops which promise an abundant yield, will in a few weeks add untold millions to the wea!th of the nation. There is midsummer stagnation now, and dullness prevails in all departments of trade and manufacture; but is it rational to suppose that the crops now maturing are to be gathered in to rot in warehouses, that exchanges and consumption will cease, the reduced stocks of general merchandize remain unreplenished, and the accumulation of unem ployed capital wait in vain for profitable investment, and all because a few railroads have been bailt on speculation and bave come to grief for the lack of capital and earnings to meet their obligations? We admit there is a present want of confidence in railroad securities which ties up capi taland keeps it in abeyance; but it is a significart sign that, notwithstanding the Wisconsin imbroglio and the record of embarrassment and bankruptcy of the past eight months, choice securities are more in demand and command better prices than before the panic. The movement of the crops which must soon begin will give employment to capital and also to the roads; confidence will gradually be restored, the machinery of trade set in motion, and the activity thus inaugurated will be legitimate and lasting. The crippled roads will gradually get upon a better basis; and with the natural development and increase of traffic, there is no
reason to doubt that existing lines will be improved, and new ones constructed wherever they are really required. I this is a rose colored view of the situation, not justified by present appearances and indication, then the history of previous revulsions in tiade and business is no criterion by which to judge, and any speculation in regard to the future is of no avail.-National Car Builder

Concrete as a Building Material.

In a paper lately read before the British Association of Gas Managers, by Mr. J. Douglas, of Portsea, upon the subject of making gas tanks of concrete, he presents the following in formation: "At the London Exhibition of 1851 it was found that a beam of pure Portland cement 14 inches long and 4 inches square, fixed at one end, bore 1,580 lbs. at the other, which is about half the strength of Riga fir. The reduction in strength by mixture with sand was the subject of experiment this year by Mr. Lamb, of Newcastle on Tyne, who found the following remarkable results.

7 days
112 days.

Pure.	1 cement and and	$1{ }^{1}$ cement	ceme
	sand.	2 sand.	${ }^{4} \mathrm{4}$ sand.
830	550	375	77
.1,065	859	580	224
36	55	60	200

The inference he draws from these figures is that seein that pure cement at 7 days is ten times the strength of mortar containing one cement and four sand, and at 112 days is only five times the strength, there is good reason to believe the process continues till there is very close approximation. In corroboration of this, Mr. Colson, of the Portsmouth In corroboration of Extension Works, who has tested within the last few years about 80,000 tuns of cement, has furnished me with the following tigures respecting the relative strength of pure cement and one cement to two sand

6 months
cement.
$.1,28$.
$.1,200$
12 months.
1,400
1,600
$\begin{array}{rrr}16 \cdot 6 & 404 & 64 \\ 33 \cdot 3 & 1,174 & 377\end{array}$
These are extraordinary results, no doubt, but they are the average of many tests, and most of us will be able to appreciate them when we remember with what difficulty a piece of brick and cement mortar in the above proportions can be broken; frequently the brick gives way before the cement joint. I have at this moment a slab of concrete, 10 feet by 8 feet 6 inches and 12 inches deep, in all 85 square feet, bear ing 6 cwt . to the square foot without any appreciable strain. On the other hand, the resistance of Portland cement concrete to compression is greater than that of any of our best building materials. At nine months old, the compar stands thus, upon a block showing 40 inches of surface

Firtland sto

Fire brick..
Portland cement.
47 tu
70
96
120
Experiments were made by Mr. B. P. Smith, the well known engineer, for Mr. Hawkshaw, prior to determining the foundation of the Spithead forts; so that, whether for resistance to crushing weight or to tensile strain, Portland cement concrete is stronger than any other ordinary materials.

Chemicalsand Galvanic Action upon Teeth.
Dr. S. B. Palmer,of Syracuse, N. Y., publishes in Johnston. Dental Miscellany an interesting paper on chemical and galvanic action upon the teeth and the material used for their preservation. The author appears to have conducted extended original investigations into this curious and important subject the results of which will be found below, condensed from the article above mentioned. He considers that chemical action and the electric current stand in the same relation to each other as do electricity and magnetism-inseparable. This brings us to consider the action of the force upon the teeth We adopt the theory that chemical action, which results in thedisorganization of the teeth, is stimulated generally by acids. An investigation of the constituents of tooth bone and its surroundings warrants such conclusions, and numeroua recorded experiments attest the same. Calcium, magnesium, and sodium are ingredients of dentine; the saliva in which teeth are bathed is usually alkaline ; the calculi which become attached to the teeth are also of the same nature, having no chemical action upon the bone or dentine. Having decided that these agents are acids, how do they find their way to the mouth?
Chemically speaking, the oral cavity is an electro-chemical cell and laboratory, in which Nature employs certain forces, that act by laws as inflexible as Nature herself. Mechanical force for crushing and pulverizing is furnished in mastication ; heat and moisture are not wanting to facilitate fermentation.
Saliva contains chloride of sodium and soda; galvanic cur rents decompose this compound, the chlorine unites with the hydrogen derived from the water of the saliva, and hydrochloric acid is the result. We have sent the current from two cells of Daniell's battery through litmus paper wet with saliva, and been able to write, in acid, characters with the copper wire
forming one pole of the battery. Hydrochloric acid is the reforming one pole of the battery. Hydrochloric acid is the result of decomposition of saliva by the current. The singular combinations of nitrogen and oxygen as satisfactorily explain the manner in which nitric acid finds its way to the teeth Abundant material is furnished in the lodgment of meat fiber rich with nitrogen, also in other articles of food that are per mitted to decompose between the teeth.
The galvanometer teaches that the filling and tooth in which it is inserted, or an approximate tooth, are sufficien for two elements, the saliva of food forming the third; or, by union, a more complex current may be established. We tate gold foil as a unit, or negative element for our experiments; with it and tin, we make a test and pronounce tin positive to gold, or, in chemical language, it is an electrolyte, a substance that is oxydized, or, if a compound, that is decomposed. will remoin a bone, also an electrolyte, or and the cold, the action of the needle will be slight; between the tin and gold,
very great. The tenth part of a grain of each will deflect the needle fifteen or twenty degrees. Tooth bone and tin foil are both below the gold, and both positive to gold, therefore electrically nearer to each other than either is to gold. The trial of tin and the teeth shows but a slight difference, the tin occupying the place of gold, still throwing the action and consumption on the side of the tooth.
Substitute alkali for acid, and the current is reversed; the bone now occupies the negative, and the tin the element oxydized. There is less galvanic action between tin foil and tooth bone, than between gold and tooth bone. In other words, a loose porous tin filling would be better in a tooth
than a gold one in the same condition. If the saliva be than a gold one in the same condition. If the saliva be this action would throw the tooth into the electro-negative condition to be preserved. In an acid saliva the tin would be oxidized upon the surface, and by that means form soluble compound to greatly lessen further action
Gold, being so far superior to tooth bone, throws the latte nto positive, relations with itself, be it in a poorly applied plug, or in approximation to another tooth, or in a clasp for the support of an artificial denture. In the latter case we need
not look for base solder to prompt the action. The only not look for base solder to prompt the action. The only cleanliness and perfect filling. A gold filling so imperfect as to show discolor will in time enlarge the cavity.
A tooth containing an amalgam plug has in it the ele ments of a minute yet intense battery, capable of decompos ing not only the plug, but the tooth around it; this is in accordance with a law of chemical affinity. The moisture in the tooth bone is sufficient to communicate the current which exists in the plug, to the tooth, and thus enlarge th cavity, or diminish the plug, or both.
The galvanometer shows that the intensity of a curren between two elements in a battery increases as the metals approach each other, inversely as the square of the distance from one to four. In the amalgam, the elements are in the nearest possible relations. The smallest possible particle of gold and tin or amalgam, even the dust that may be taken from separating files used for those metale, shows decided action, by turning the needle. On separating the elements a short distance, no action is perceived. Thus minute sur faces, excited in close proximity, equal larger ones at a dis tance. Again, a current, if very feeble, continued for a long time, is equivalent to an intense one for a short period.

In view of the above statement, the importance of thoroug malgamation of the compound, and cleanliness of the as the physician resorts to other mercurials, to arrest a vio ont and threatening disease. A tooth, that would be speedily ost without it, is a proper tooth to be preserved by it.

Iron Dams.

The Elmira Gazette urges a new departure in the method constructing dams. It says
Masonry is but a little better than earthwork when op posed by rushing water. What is needed, it seems to us, is material which will not crumble or break up when attacked by rushing water. A dam might be constructed with a frame work of iron, held by subterranean guys anchored beyond the reach of the water. The foundation could be planted in a rock bed, or, in the absence of rock, against a system of piling, so as to be absolutely immovable. Thus strength would be attained. By planking the iron frame and covering the latter with earth or cement, tightness would be secured This system would achieve one end, at least. In case of a reak in the dam, no disaster could follow to the region be ow, because only a small portion would give way and the water would escape comparatively slowly. The anchor could be so disposed as to render comolete giving-way im possible, or at least improbable. The matter of cost,and the process of rendering the iron durable as against rust, are matters for engineers and iron makers to consider. We be lieve that, for dams as well as bridges, iron is destined to come into use.
[We have no doubt, as the Gazette suggests, that dams o most absolute security could be made of iron. The only difficully is the expense. The interest on the outlay would in many cases pay or nearly pay for the fuel required to號 furnished by the iron dam.-Eds.]

How to Tell a Goose from a Gander
In sorting out a flock of geese for home breeding or to make sales, it is often difficult to distinguish the males from the females. A correspondent of the Farmers' Home Jour nal, Ky., thus delineajes the difference:
"The goose has always a feminine appearance and the yander the opposite. Her head is smaller and her beak shorter; knot on forehead smaller and not so pointed; her neck shorter and more delicate; the black streak on back of neck not so bigh; colored ring around head not so bright her neck comes out of her body more abruptly (this is occa ioned by her having a larger breast than the gander),giving equare appearance to the body. The voice of the gander keener and louder; coloring about head more briliiant
eyes keener and always on the lookout. Witn such marks pain to view, any practical gooseman can readily distinguish one from the other."

The British steamer Tagus is now taking on board, at the Jersey City wharf,opposive Now York,ten large locomotives, built at the Grant locomotive works, Paterson, N. J. They are for a Russian railway and are to bedelivered at Taganrog, on the Sea of Azof. They are said to be splendid examples of American mechanism

New Theory Comets.

The following novel theory of comets is proposed by a cor espondent of Iron: "Comets are supposed to consist of thin vapors of gases, held together by the mutual attraction of their particles. Like all bodies so circumstanced, they neces sarily assume the spherical form; and therefore the common notion, that they consist of a comparatively small and brigh nucleus and an immensely long and illuminated tail, evi dently derived from their appearance in the heavens, canno or a moment be entertained. That their spherical form, a shown by the reflected light of the sun, would scarcely b iscernible at the distance of our earth, even though the comet were as dense as the densest cloud of our atmosphere would not be surprising; but if their attenuation, as described by Sir John Herschel, be considered, all wonder ceases. Sir John Herschel says 'that the most unsubstantial clouds, which float in the highest regions of our atmosphere and seem a sunset to be drenched in light and to glow throughout their whole depth as if in actual ignition, without any shadow or ark side, must be looked upon as dense and massive bodies compared with the filmy and all but spiritual texture of a comet.' Owing to this extreme tenuity of matter, the ray of the sun's light, as reflected by it, are absolutely invisible to the inhabitants of the earth ; but the other rays, penetrat ing into the center of the comet, are refracted by this power ful lens of twenty millions of leagues diameter into the focu which forms the nucleus of the comet, where there is, per haps, a greater concentration of rays of light than anywhere else, not in the body of the sun. Hence this large body of concentrated light, streaming in a narrow path through the remaioing balf of the comet, in a direc.ion opposite to the sun, forms that splendid appendage called the tail
It seems scarcely necessary to point out that this mode of viewing a comet accounts for the circumstance of the tail be ing always in opposition to the sun, whether in advancing or eceding. Also for the wonderful celerity shown by the tail in turning round the sun when the comet is in perihelion, nd for the rapidity with which the comet darts out its tai after the peribelion passage. It explains, also, on the prin ciple of the aberration of light, the bend which the tail of some comets have towards the region they have left, also the absence of a solid nucleus, and the non-obscuration of the stars by the body of the comet. If the conjecture be correc that the nucleus of a comet is near its center, and that the comet extends in every direction round the nucleus to as reat a distance, at least, as the length of the tail, then it ollows that at this present moment the sun is feasting on ar comet, and that when it emerges from his embraces, few days hence, it will have suffered some diminution of size."

Coating Cast Iron with Copper
The Society of Forges and Founderies of Val d'Osne bas recently opened in Paris an exposition of their curious pro ducts, consisting of objects of art in cast iron, some of con iderable volume, which are covered with copper by the Gaudoin process. This operation admits of the deposition of copper upon cast iron without necessitating any previous oating of the latter. The difficulty of accomplishing this has been the scouring of the iron, the baths of chemical itherto used being incapable of thoroughly cleaning th metal. M. Gaudoin has found that very acid solutions ar ecessary to remove tine oxides of iron which escape the ecour ng ; but at the same time the acids do not attack the subjacen metal. Such a solution acts continually on the points upon which the copper is not deposited, and ends by dissolving the oxides and allowing the deposition to take place. A larg umber of organic acids have been found suitable for the purpose. The oxalates of copper combined with the quad ri-oxalates of soda are said to give excellent results. An electric current is employed to secure the fixing of a thick ayer of copper.

Moles.
W. S. N. says: "On page 50 of your current volume, you have n item about moles; and I would like to give you my exper ence with them this spring. I planted some sweet corn in the arden very early; and after waiting longer than the prope time for it to come up, I examined it to see what the cause was, and found that a mole had taken every grain in four row corn, across a garden three fourths of a square acre, no only once, but two more plantings after the first. On the rear end of my farm, in a piece of " new ground," they finished half of an eight acre field. I would like to know what Monsieur Flourens would say to that? The negroes in this ection always plant several hills of caster oil beans in thei gardens to keep the moles out."

Powdering Camphor

G. T. Eberts, in the Pharmacist, says that the methods and uggestions for powdering camphor and retaioing this refrac ory body in its powdered siate, have not alone been numer ous but curious.
Glycerin is the simplest and most efficient substance t seep camphor in a finely divided state. Take camphoi 5 ounces, alcohol 5 f. drachms, glycerin 1 fl drachm. Mix the lycerin with the alcohol and triturate it with the campho until reduced to a fine powder.

Frencil Railway Cars - Some of the double deck cars which are quite common upon French roads, exhibit a mos extraordinarily small proportion of dead weight. nne on only 11% tuns. Freight cars weighing but $10,000 \mathrm{lbs}$. carry 20,000 or even as much as 30,000 pounds.

YOUNG'S WATER MAIN TAPPING MACHINE. This invention, an engraving and description of which w presented in the Scientific American of June 7, 1873, has recently been the subject of several improvements. These mainly consist in the material used in the construction, the main bar being made of cast steel, and all other portions of steel or brass, thus avoiding any difficulty from springing while in operation. The two parts of the drill case, A, are clamped by bolts and receive the drill, B. At the end nearest the pipe is a detachable washer, in a socket having a concave face to be clamped against a packing gasket in order to make a watertight joint. Instead of making this packing in two parts as formerly, it is now formed solid and a round stop cock employed, over which the packing is pulled when the machine is removed. The handle at C communicates with a cock within, to close the aperture when the drill is removed, said cock having a notch to allow of the passage of the tool. After the hole is drilled and the point of the implement drawn back beyond the cock, the latter is turned so as to close the orifice. The connecting pipe is then substituted for the driil, the cock turned back, and the connection made. The hose at D serves to conduct away chips blown out. The drill is operated by the ratchet lever shown and fed by the screw, E.
The apparatus as improved may be adapted to $1, \frac{8}{4}, \frac{1}{2}$, and $\frac{8}{8}$ inch pipe, by substituting different drills.

This inventor has also patented, through the Scientific American Patent Agency, April 1, 1873, an extra improvement on his device, by which a disk of glass, F, Fig. 2, is substituted for the stop cock usually employed and left buried in the earth, thereby decreasing the expense and simplifying the process. For the purpose of keeping the water back while the connection is being made, the service pipe is constructed in sections coupled together by a union and having between their ends the glass plate. As soon as the work is done, one of the sections is screwed up tightly, thus crushing the glass and permitting the water to flow. The pieces are, of course, quickly washed out.
Further particulars regarding these devices may be obtained by addressing Mr. W!lliam Young, Easton, Pa.

IMPROVED DUMPING WAGON.

The action of the dumping wagon represented in the an nexed illustration is in one sense automatic, inasmuch as, in order to dump the load, it is merely necessary to back the vehicle up to the place of deposit. The construction is such that, when the wagon is thus situated, the rear axle and wheels remain stationary while the front axle and wheels are moved toward them, causing the wagon body to slide over the rear axle and finally to tilt rearward. The reverse operation-that is, simply starting the draft animal ahead -pulls the wagon body back into its place.
The mechanism and its mode of operation are as follows Under each side of the wagon box are two longitudinal timbers, each of which is made in two parts hinged in the center. The front ende A, of these timbers are connected by the foot board and are secured to th upper part of the fifth wheel, whil fhe rear portions, B , are permanently fastened to the wagon body. On the sides of the rear hounds are pivoted slides, C, which fit over and move on guides attached to the inner sides of the parts, A, of the bed timbers. Just forward of the rear axle, and suitably connected thereto, is a shaft, on either end of which are adjusted rollers in eccentric journals. To the latter are attached handles, D, by pressing down which the rollers are thrown in action lifting the wagon body clear of the axle.

Supposing the wagon to be first in the position of the dotted lines in the engraviag, it is evident that, the rollers being turned into action and the fron axle and frame being pushed to the rear, the wagon body will slide over the rollers until the hinge of the long timbers under the bed is reached. The weight of the load will then bear the rear end, left unsupported down ward, and the contents of the wagon will necessarily be discharged. The vehicle is represented in our illustration while in this position.
It will readily be understood, without further explanation, how the application of draft to the pole or shafts of the wagon speedily pulls the front axle forward and causes the body to fall back in its former position. A longitudinal bar, E, having a horizontal projection, and which passes through a keeper in the rear hounds, is then turned by means of the handle, F. The projection, assuming an upright position, just forward of the cross piece of the rear hounds, prevents the same from moving forward and locks the parts in place. The rear levers, D, are also turned up, thus allowing the body to rest directly upon the axle. The forward end of the box is also secured by pins passing through staples, G, which enter slots in the body timbers. The rear wheels are pro-
vided with suitable brakes, and the general construction of the vehicle is of strong and durable description. We are informed that the invention is now in use in Louisville, and as proved both efficient and useful
Patented August 19, 1873. For further particulars re garding sale of rights, etc., address the patentee, Mr. Daniel D. Smith, 376 West Jefferson street, Louisville, Ky.

The Philosopliy of welding.
In order to find a true analogy to welding, we need go no urther than the vulgar "sticking together" of two piece of cobbler's wax, pitch; putty, or clay. These are in a vis cous or semi-fluid condition, and they cohere by an action similar to the transfusion or intermingling and uniting of

YOUNG'S WATER MAIN TAPPING MACHINE.
pasty stage on their way from the solid to the liquid states, and the temperature at which this pasty condition oscurs is the welding heat. Other metals aie not weldable, because they pass too suddenly from the solid to the liquid condition Ice, although it fuses slowly, in consequence of the great amount of heat rendered latent in the act of fusion, passes at once from the state of a brittle crystalline solid to that of a perfect liquid. It passes through no intermediats pasty stage, and therefore is not weldable, or does not cohere like ron, etc., at a temperature below its fusing point.
It is usual to cite only iron and platinum, or iron, platinum, and gold as weldable substances, but this, I think, i not correct. Lead should be included as a weldable metal The two halves of a newly cut leaden bullet may be made to reunite by pressure, even when quite cold. This is obviously due to the softness or viscosity of this metal.
Outside of the metals there is a multitude of weldable
with sufficient force to drive out from between them all the liquid silicate, and thus he secures a true annealing or actual nion of pure metallic surfaces.
Cast iron or steel containing more than two per cent of carbon cannot be welded. Why? I think I may venture to reply to this oft repeated question by stating that the com pound of iron with so much carbon is much more fusible than pure iron, or than steel with less carbon, and that it runs more suddenly or directly from the solid state into that of a liquid, and hence presents no workable range of weld able viscosity. - W. Matticu Williams, in Iron.

Fishing by Means of Explosives,

At a recent meeting of the California Academy of Sciences, Mr. A. W. Chase, of the U. S. Coast Survey read a short paper on the capture of fish by the explosion of cartridges by means of fuses under water, which he has practiced with much suc cess. He says: "I have found that the ordinar waterproof fuse will burn about one foot to every twenty-five seconds, and by experiment that a cartridge will explode in from four to six fathoms with from three to four inches of fuse I have, however, made no exact experiment on the subject. The shock of the explosion is most severely felt downwards, as the resistanc is greater; and the different varieties of sea fish ound near the rocky shores of the islands as rule being found on or near the bottom, it is desirable to explode your cartridge about mid way between the surface of the water and the rocks beneath, as you thus reach both the deep lying fish and those, like mackerel and smelt, which swim between.
The modus operandi adopted by Mr. Chase was to take a small skiff and row out to the kelp beds surrounding the island. "Here, in six or eight fathoms of water, the bottom is dis tinctly visible. When an unusually large school of fish would swim by, I would quietly light the fuse and drop the cartridge into the water gently. If the water was, say, eigh fathoms deep, I would graduate the fuse for explosion at four. The cartridge would slowly sink-gen erally in a spiral-and a few bubbles of air or smoke arise to the surface. When the fire reached the fulminate of mer cury, there would be a sudden white flash, then a quick sharp detonation, the blow striking the bottom of the ekiff a if some one had struck it with a hammer. Then, in pace of time varying from eight to ten minutes, every fish within a radius of forty or fifty yards would slowly c: me to he surface. Those within the immediate vicinity of the $\in x$ plosion, of course, were killed by bursting the bladder and injury to the large intestines, and had to be speared up from the bottom. Those, however, at a greater distance would be simply stunned, and could be taken in with a net. Car had to be taken to avoid touching those only slightly stunned until the net was fairly around them, as the slightest blow would arouse them from their torpor
I am now about to relate what will, perhaps, be called a genuine 'fish story'; but as I have, in addition to my own, the testimony of my men to the fact, I give it as it occurred:
I had brought up by an explosion a number of yellow bass fish, weighing about four pounds each. These are de licious in chowder, and so instead of put ting them in alcohol I had them cleansed which was done byscaling, removing the intestines, and cutting off the fins and tail. The head, however, still remained joined to the back bone. These fish, from the time they had been taken from the water up to the time of cleaning, remained apparently lifeless. Nor did the remova of the intestines arouse them. They were then taken up to the old barracks, where I was temporarily camped, and hung upon nails driven in the clapboards. Some little time after they had been thus disposed of, one of the men came in and asked me to go out to look at the fish. did so, and found every individual bass slapping around in as lively a manner a if he had been freshly caught and hung up. They had, in fact, recovered from the explosion, and proceeded to die in the common fashion. I took one down and broke the backbone where it joined

SMITH'S IMPROVED DUMPING WAGON.
ubstances. I may take glass as a typical example of these. Its weldability depends upon the viscosity it assumes at a bright red heat, and the glass maker largely uses this property. When he attaches the handle to a claret jug, or joins the stem of a wine glass to its cup, he performs a true weld ing process.
The chief practical difficulty in welding iron arises from the fact that at the welding heat it is liable to oxidation, and the oxide of iron is not viscous like the metallic iron. To remedy this oxidation the workman uses sand, which combines with the oxide and forms a fusible silicate. If he is a good workman he does not depend upon the solidification of this film of silicate, as the adhesion thus obtained would be merely a soldering with brittle glass, and such work would readily separate when sabject to vibratory violence. He therefore beats or squeezes the surface together
the head. Its struggles ceased instantly, thus showing that the vital force had been arrested in the nerve centerg and brain at the time of explosion, and, when the effect had passed away, that the fish had resumed a gal vanic life. It was probably about half an hour from the time of explosion when this occurrence took place. I have not been able since, however, to secure the same result, al though I must state that the only time since then that I have tried the experiment was on the Oregon coast, where I brought up a school of salmon, all of which were pickled for Agassiz. These fish were, howver, too close to the explo sion, as they were killed outright."

Remedy for Insect Stings.-M. Dauverne says that 30 or 40 grains of quicklime dissolved in water is a thorough remedy for the stings of insects, and far superior to ammonia or any other alkali.

TYE WESTERN LOCUST PLAGUE.

We supplement the description recently given of the lo custs, which are producing such widespread destruction to the Western crops, with an engraving representing the insects devastating a grain field. An estimate of the dam age done to the harvests of Iowa and Minnesota during the present year places the value of the vegetation destroyed for the former State at $\$ 2,000.000$, and for the latter at $\$ 3,000$, 000. It is also said that about 4,000 people in both States will require help to the total extent of some $\$ 800,000$.
The present belief is that the locusts originate in the grea prairies, and, when fully developed and able to use their wings, become carried off by the wind. Their instinct compels them to alight upon the first fields of young crop encountered, which they speedily strip of every leaf. If they remain long enough to deposit eggs, the following year will see the plague resumed with even greater severity. Professo Humiston, of Worthington, Minn., who has studied the habits of the insects with care, describes the process of egg laying as follows

The tail of the female locust consists of a hard, bony cone-shaped substance, capable of being thrust into the ground from one half an inch to an inch in depth. Just above this on the body of the insect, and attached to it, is the
fact, had the matured locusts let it alone, it would have yielded more than an average crop of wheat. The theory is that turning the eggs well under prevents many of them from hatching, and delays those that do hatch so long that he crop has a chance to get a good start
The locusts generally begin to fly each day between 10 A. M. and noon, and alight about 4 P. M. If they alight in a wheat or oat field, they are generally so thick that there are from three to ten locusts on every stalk of grain. In the cornfields they actually cover the corn that is three or four feet high, and in many cases bend it down to the ground with their weight. Neither flax, potatoes, garden vegetables, nor any other crops escape.
One of the most effectual means recently employed for aving the grain of Minnesota farmers was to "rope" the fields-that is, to hitch each end of a rope 200 feet long to a horse and drag it over the grain. This disturbed the "hoppers" and brushed many of them off the heads of the grain upon the ground, where they would remain until the swarm got ready to fly, and doing little damage. Others would return to their work of destruction, but would be llowed to remain but a few minutes before they were again disturbed. This "roping" was continued until the locusts became disgusted and flew away. Some farmers found
material came to be produced in many German towns. In a report by Mr. E. Locke, an expert deputed by the English Society for the Promotion of Scientific Industry, we find the following description of how the china is now made at the Dresden Royal Works
The material of the porcelain body is found near Meissen, and it is washed on the works. It has the appearance of being of a loose, sandy nature. The fine particles are floated way, and carried with the water along a series of spout till deposited in tanks of slate, after which the water i gradually drawn off. The thick slip is then put in bag about two feet long and eighteen inches wide, which are laid on their sides upon wooden hurdles plaited with wickerwood everal layers of hurdles and bags are put upon each other flat board is placed on the top, and a screw is brought to ear gradually, till all the water is squeezed out. The clay then ready for tempering. The plates and round dish re made upon the thrower's whel, and are then bloc pon a mold on the wheel the for it being work with a roll. When it has left the mold, it has to be hard ned and the back turned on a wheel, to give the finished outline to the foot. The bottoms of all the plates and dishes are raised up about a quarter of an inch, to allow for th dropping in the firing of them. Another man does the fin

LOCUSTS DESTROYING A GRAIN FIELD.

egg cell. The grasshopper is able to push its conical-shaped tail down into the ground, and to leave it there with the cell containing the eggs. The warm sun in the spring causes the eggs to hatch, and the field is covered with millions of young grasshoppers, not as large as a kernel of wheat, just when the tender shoots of grain begin to show themselves above the ground.
A correspondent of The Tribune, writing from Minnesota states that many farmers knew last fall that their land was full of these locusts' eggs, and anticipated that, unless they could be destroyed, the crops would be greatly injured again this year. Professor Humiston and others conceived the idea of plowing deep and thus covering the eggs with a layer of earth so thick as to postpone, at least, the time of hatching. Much of the land in which these egge were deposited was the prairie which had just been broken, this being only the second year that a crop has been raised there. Some of the farmers "back set" the land in the fall-that is, turned the sod back again and covered it with a thin layer of earth. In one of Professor Humiston's wheat fields, a part has been treated in this way, while part has been sown among the locusts' egge. The contrast is wonderful. The part that had been " back set" will yield at least four times as much wheat to the acre as the other. The young loousts that hatched on t he field appeared later and in much amaller numbers. In
moking very effectual. When the locusts were flying, they placed damp prairie grass on the windward side of their fields and set fire to it. The locusts either did not alight, or, if they did, did not stay long. But this was not always suc cessful. One farmer who tried it states that at first he thought the "hoppers" about to leave; he went away for a fresh load of grass, and when he came back he "found the fires." After that, the hotter we made the fires by his denser the smoke, the better they seemed to like it.

China Making in Dresden.
The fashionable mania now existing in Europe, and espe cially in England, which is also extending to these shores, is for old and surious china, and for odd and rare specimens rices are given which are ridiculously enormous. At an uction sale recently, a professional china dealer paid $\$ 50,000$ or a single pair of vases, after a very sharp competition, and several instances have happened where sums of nearly qual magnitude have been lavished by the wealthy in ratifying this peculiar taste. The old Dresden china is exremely valuable, more from its quaintness and richness of design than for the method of its manufacture. The latte at one time was kept a profound secret, but, like many othe trade secrets, this one eventually leaked out, so that the tru
shing of the edges of the plates and disher, for there is a lear waste upon the plate of half an inch, level with the edge, and that has to be cut away with a knife. The figure makers have their labors divided. The figures are all made very thick, and the bodies of some of the figures are al pressed solid; and to get the molds close they are put under a screw press. The parts of the figures are then taken to the finishers, who have to go over all the surface with their ools, and every fold and embossment is retouched; it is a great waste of labor. The molds are all very dull, and th lines of fine drapery hardly be seen.
The plaster of Paris used for the` molds seemed very hard, with a gray look, and heavy in its gravity. The cottle sed by the mold maker were of a very rude description, nd those for the square molds were made of plaster bats astened at the corners with twisted wire; the plaster seemed to take a good finish.
The figures are burned the first time, laid upon their backs, with short props dipped into ground quartz. The kiln is divided into two parts by a low dome about six feet high, with a hole, in the center, of two feet. The clay is placed in the bottom part and the gloss above, and all the saggers are luted. The ware fired in the bottom part of the kiln i hardly out of clay, and has done scarcely any contraction it is as porous as an earthen piece in the biscuit state. It is
afterwards dipped; and the glaze being in a very thin state, the dipper gets it on the piece very equal and thin. They do not use a wash for the bottoms of the saggers, but a thick bat of sagger clay, with a deal of sand in it, and it seems to answer the purpose well.
From this it will be seen that the pieca of ware has to do almost all its contraction in the second burning with the glaze upon it, and with no support at all. Mr. Locke was told the contraction was one sixth; but, from what he sRw, he thought it about one eighth. The glaze is composed of felspar from Norway,good clear quartz, and a limestone, of a bluish gray color before it is calcined. The clay with which they make the saggers is found in the neighborhood of Meis sen; it is not a fire clay, but more after the nature of a bal clay. They use the ground grog and a sand mixed with it. Coal is obtained from Bohemia; it is of a very dull looking black, and the cost must be considerable from the distance it has to come.

The Henderson Brake.
This improvement has lately been subjected to a practical trial with much success, on the West Chester and Philadel phia Railway, the train consisting of engine, tender, and five cars. On a level, speed 35 miles per hour, the stop was made in a distance of 180 yards in $19 \frac{1}{2}$ seconds; boiler pressure, 120 lbs. Trials on grades were made with equally favorable results, all showing that the brake has no superior. Its construction and operation are as follows: Between the wheels of each truck there is placed a cylindrical vessel of cast iron, whose ends are formed of two dish-shaped flexible diapbragms of india rubber, secured to the drum, and making an airtight joint at the periphery by flanges bolting thereto. Two rams working in opposite directions are fitted against and into the hollow part of the diaphragms; their outer ends are attached by rectangular flanges and bolts to the brake beams carrying the brake shoes. The several castings are simply bolted together, with the diaphragms, as they come from the foundery, without recourse to the usually expensive mechanical fittings.
When pressure comes between the diaphragms, it simply forces them apart, projecting the rams, which act immediately on the brake beams, applying the brakes; and when the pressure is relieved, the atmosphere reacts on the area of the rams and forces them back, assisted by the tendency of the diaphragms themselves to recover their normal condition.

The peculiar construction of this device, it will be seen, possesses all the requirements of a cylinder and working piston, as well as recoil springs. All piston packing and stuffing boxes are dispensed with, and nolubrication is required; the interior is sealed from dust, all complications of levers and rods and attendant lost motion is done away with, and its operation is free from all connection with the usual hand brake gear, which remains as efficient as it was before.

The power is derived directly from the boiler of the locomotive; we have therefore at our command the same power to stop the train which is used to impel it forward. The de vice employed to transmit this power, to the pressure boxes just described, consists of a hydraulic press, operated by a double acting steam cylinder, the valve of which is worked by the hand of the engineer. There is a piston in each steam actuates the one to force the water from the other thus creating hydraulic pressure on the pressure boxes, and to withdraw the same to release the brakes. An air cushion
is provided above the press piston to prevent striking the heads when coming back light. The press receives water from a tank, which may be the engine tank or a special tank provided for the purpose, through a pipe furnished with a check valve opening towards the press cylinder, in such manner that the fluid cannot return to the tank; the supply is arranged to feed automatically; any excess or leakage past the press piston is at once returned to the tank. For low temperatures, a mixture of equal parts of glycerin and wa ter is used in lieu of water, which is safe to $30^{\circ} \mathrm{Fah}$. below zero. Iron pipes are used under the cars with flexible hose between them, furnished with hydraulic couplings, which it
is obvious must be tight both with and without internal is obvious must be tight both with and without inter
pressure, a peculiarity possessed by this coupling alone.

Vaporizing Metals by Electricity

The following simple results, communicated to Nature by G. H. Hopkins, obtainəd by frictional electricity may be of in terest,perhaps too of use in the investigation of certain miner als and the action of intense heat upon them.
The description of a characteristic experiment is all tha will be necessary to explain the process and to show how similar results may be obtained from other substances.
A very fine thread of sheet platinum, of about an inch in length, is placed betwe picroscope slides of glass, and two pieces of thin sheet copper with rounded ends are placed in contact with the extremities of the platinum, the copper being any of convenient length and breadth, so as to extend beyond the glass slides, but not to be as broad; a charge of elec uricity from about eight square feet of Leyden jar is passed through the metals; the effect of the heat from thecharge is to vaporize the platinum, which is instantly condensed in a transparent layer upon the cold glass. The layer can be inves-
tigated by a microscope, and employed in various ways to determine the character of the metal andits effect upon reflected or transmitted light.
Copper, tinfoil, tinfoil amalgamated with mercury, gold and silver, can be used in a similar manner, but they produce layers very dissimilar in appearance. To act upon finely ny, sulphur, etc., a line of the powder must be made and
the charge be passed through in the same way as through the platinum.
Part of the vapor escapes from between the slides, but this can be easily condensed upon each of two pieces of glass placed in such a way as to intercept the vapor as it passes from between the two slides; it is then condensed in a long but nar row line. The manner in which the glass is affected by the heat,and the concussion produced by the expansion of the va por, are worthy of notice.
Considerable difficulty will be found in vaporizing copper doubtless from its being such an excellent conductor. Some o be passed through them before they allow a larger charge to pass, as if the particles needed polarization.

Patented Car Improvements.
There were one or two points in the proceedings of the Car Builders' Association, at its late meeting, in which a peculiar sensitiveness was developed about discussing the merits of patented devices. The impression seemed to prevail with many of the members that such devices were not only inad missible as legitimate topics for discussion, but that commit tees, in making their reports, must not indorse or recommend any such devices for adoption, no matter what might be their actual merits. This, in our judgment, is a mistake which can not be too soon corrected; nor do we think that, in order to do so, any alteration of the constitution of the Association is necessary. That instrument, asit is now, merely forbids the admission of patentees or their agents to advocate their claims at any of the meetings of the society, but does not prevent the members from freely expressing their views in the regul ar course of discussion upon any invention or device, whether patented or not. To suppress all discussion which respect to patents would seriously hamper the Association in the exer cise of its proper functions, and so far destroy its usefulness It must necessarily be progressive or disband.
It is not the business of the Association to make or unmake the fortunes of inventors or patentees, or to discriminate be tween rival claims, except on the score of actual merit, and as the interests of railroads may be affected thereby. If the Mil ler platform or the Westinghouse brake is a good device now let it be indorsed and approved; but as soon as either is surpassed by something better, let it be condemned. There is no evading this obvious duty. The Association has got to recognize patented inventions and pronounce upon their respective merits, so far at least as they apply to railway cars or to be exposed to comment and criticiem, such as may b ound in the Scientific American of July 18.—Nationa Car Builder.

The Fireless Locomotive System
A correspondent, Mr. Michael Flurscheim, mechanical ongineer, of Gaggenau, Germany, asks: "Could not the principle of the fireless locomotive be applied to coaches, cabs, and private vehicles? By calculation, I find that a tank of $\frac{11}{2}$ feet diameter and $\frac{3}{4}$ foot length, jacketed by a non-con ductor of heat, would be sufficient to propel an ordinary rehicle, containing two persons, on a Macadam or wooden pavement, at a speed equaling that attained by ordinary cabs. It seems to me that, in cities like London, Paris, New York, Boston, and even in smaller towns, large charging boilers could be kept at each cab stand or in each street, where, at a minute's notice, a charge of hot water could be btained at a moderate expense, which would propel the ehicle, say, 7 miles, and then another charge of hot wate could be obtained. Horses could thus be entirely done away with; and traveling would be cheaper, more convenient nd less dangerous. A man who now keeps a horse and car riage could, at less expense, purchase a little buggy pro vided with a fireless engine, and keep it at the boiler stand in his street. If he wants to drive, he sends his boy or man o the stand; in one minute the boiler is charged, and the cab at his door. He need not be afraid of keeping his horse waiting at his door, as no weather will injure his steam ani-
mal. If this system were generally adopted, the municipali mal. If this system were generally adopted, the municipal ies would probably be forced to lay narrow gage track curves, and street, connecting with the crase the country would follow, connecting with the city roads and provided with boiler stations. We could then easily come to town from our country places, or travel all over the country, in our own vehicles, at very little inconvenience, needing no one to look after or feed the horses."

Sensitized Paper

At a recent meeting of the Photographic Section of the American Institute, in this city, Mr. H. J. Newton, Presi dent, made some observations on this subject. He said : The reparation of a sensitized albumen paper as a commercia pensive to meet the popular demand, or deficient in keeping quality. There are several ways by which paper can be prepared so that it will keep indefinitely; but as a rule, it is oxceedingly difficult, if not impossible, to make a print on uch paper that would not ruin the reputation of any photo rapher, especially after it is a week old. Some time since, in experimenting in this direction, I found that, by floating the albumen paper back down for one or two minutes on a
solution of hydrochloric acid-one ounce of acid to forty ounces of water-and drying, it would render it capable of eeping perfectly for ten or twelve days after sensitizing. Not only this, but the prints made on paper thus preparad were remarkably fine, and also those made after ten days seeping were equal to those printed immediately after sen itizing. Paper so prepared should not be fumed until re quired for use. After the paper has been removed from the
acid solution and dried, it would be well to pack it away under a light pressure, placing the albumen surfaces to gether, so that when required for use it will be in proper condition to put upon the sensitizing bath. As it is a great convenience for photographers to be able to keep paper for several days after sensitizing without its deteriorating, I would suggest that some of our many manufacturers of albumen paper prepare some of it in this way, as I am sure that photographers would willingly pay the extra expense. In the toning of these prints, I used a little tartrate of anti mony, and it worked very well. In the first place, the prints turned red-a very deep, rich color-and toned up from that. I have not experimented enough to give a relia ble formula, but I would suggest half an ounce of tartrate of antimony, which is commercially known as tartar emetic dissolved in sixteen ounces of water; for each grain of gold se half a dozen drops of that solution, and increase it unti ou get the desired effect.

The Rallway Rolling stock of the United Stater. The return of railway rolling stock, as given in Poor's Manual for 1874 -5, on the roads of the United States and Canada are as follows :-

Passenger cars of all classes.	29,90
Baggage, mail, and express cars..	4,157
Box, merchandize, and house cars	87,009
Platform, gondola, and flat cars.	52,198
Stock cars.	14,222
Coal cars (number of wheels not st	66,887
Four wheel cars (mostly coal).	37,892
Caboose cars.	1,549
Oil cars.	3,154
Ore cars.	2,102
Lumber cars.	193
Freight cars not classified.	94,694
Total.	373,959
Locomotive engines.	14,939

Deducting from these aggregates 774 engines and 13,980 ars of all classes, as returned by the Canada roads, leaves for the roads in the United States a total of 14,165 engines and 359,979 cars, exclusive of what are denominated service cars, and exclusive of narrow gage cars.

Simple Dyspepsia Remedies.
Dyspepsia arises from a great variety of causes, and differ ont persons are relieved by different remedies, according to the nature of the disease and condition of the stomach. We know of a lady who has derived great benefit from drinking a tumbler of sweet milk-the richer and fresher the betterwhenever a burning sensation is experienced in the stomach An elderly gentleman of our acquaintance, who was afflicted for many years with great distress after eating, has effected a cure by mixing a tablespoonful of wheat bran in half a tum bler of water, and drinking it half an hour after his meals. It is necessary to stir quickly and drink immediately, or the bran will adhere to the glass and become pasty. Coffee and bran will adhere to the glass and become pasty. Coffee and with dyspepsia are in the habit of using, and should be avoided. Regular eating of nourishing plain food, and the avoided. Regular eating of nourishing plain food, and the
use of some simple remedies like the above, will effect in use of some simple remedies like the a
most cases quicker cures than medicine.

High Bulldings.

A visitor to our office recently, coming to New York for he first time in several years, mentioned the prevalent ma ia for lofty buildings as one of the most noticeable, to a tranger, of the changes which have taken place in our city architecture. It is curious to remark that the tallest of hese high edifices are situated within the radius of a few blocks of the Scientific American office, and our out-of town friends, in visiting the latter, may spend an interesting hour in making the round of these very imposing structures. Their hights are as follows: Trinity church, 284 feet; Union Telegraph building, 226 feet; Brooklyn bridge tower, 222 feet; Tribune building, 221 feet; shot tower, near Beekman treet, 220 feet; St. Paul's church, 203 feet; post offic dome, 195 feet; Equitable Life Insurance building, when wo stories, soon to be added, are finished, 175 feet.

A Natural Curiosity.

Massachusetts papers report that a portion of Winchendon Mass., covered with grass, cranberry vines, whortle berry bushes, and over four hundred trees, recently floated off into Monomonock lake, between Rindge, N. H. and Winchendon, Mass. The newly formed island wa first seen near the town of Rindge on May 30. The fol lowing day it again floated off about two miles down the lake, but on June 3 returned to its first place of anchorage. The island covers six acres,and is in a lake covering an area of 2,500 acres. It was probably started from its natural site by the lake being unusually high and a strong southerly wind prevailing. But it has also been suggested that it left Massachusetts for a summer vacation in New Hampshire, to scape the effects of protracted legislation, and that after all t may only have originated in a Yankee trick for attracting ummer tourists to the lake.

New Property of Metallic Rhodium

MM. H. Saint Clair Deville and Debray state that rho dium, precipitated from its solutions by formic acid or al cohol, decomposes the formic acid with a disengagement of eat, and reduces it to its elements, hydrogen and carbonic acid. This action continues almost indefinitely.
When the action of the rhodium on the formic acid be comes weak, it is merely necessary to wash and dry the metal in contact with air in order that the phenomenon be repeated with its primitive intensity, disengaging equal volumes of carbonic acid and hydrogen.

Agricultural Life in Missouri.
What can be pleasanter, alys an exchange, than the life of a hissouri farmer? At daylight he gets up and examines the holes around his corn hills for cut worms, then he smashes coddling moth larve with a hoe handle until breakfast. The forenoon is devoted to watering the potato bugs with a solution of Paris green, and after dinner all hands turn out to
pour boiling water on the chintz bugs in the corn and wheat pour boiling water on the chintz bugs in the corn and wheat fields. In the evening a favorite occupation is smudging peach trees to discourage the curculio; and after a brief seaoptera, all the folks retire and sleep soundly till Aurora red dens the east and the grassboppers tinkle against the panes and summon them to the labors of another day.

New French River Steamboat

A large steamboat has recently been constructed at Seyne, France, after the plans of M. Dupuy de Lome, for the navigation of the river Rhone. She is 496.8 feet in length, and has 37.1 feet beam. With her coal on board stie draws but 17.5 inches of water, and can receive 126 tuns of load per 39 inches of immersion. At a draft of 50 inches she carries a load of 900 tuns. The vessel has four boilers and two inclined compound engines, which drive two large helicoidal wheels placed in the stern, each of which has twelve wings. Each wheel moves independently of the other, so as to be used for steering. The craft has been tried once, but without good results, through some mistake in the construc tion of the machinery. It was found that a higu speed threat ened to shake he
shortly remedie

American Telegraphy.

The efficiency of the service of the Western Union Telegraph Company is well illustrated by a statement which we copy from Mr. William Abbott's Monthly Circular for July 1. This statement, whish alludes to the perfect organization of the Anglo American Telegraph Company, says that meseages are exchanged between London and California in the same space of time occupied for similar service between London and Paris, the distances respectively being about 5,500 and 250 miles. As the Western Union Company per form over two thirds of the entire service between London and California, the exhibit is a remarkable evidence of the efficiency of that company, and, considering the respectable source whence it comer, the appreciation is all the more valuable.-Journal of the Telegraph.

Spiritual Phenomena.

At a private party, given at his London house during the past month, Sir Charles Wheatstone exhibited some curious electrical experiments for the amusement of his friends, which would seem to throw some light on certain so called "spiritualistic manifestations." In a dark room, by a stamp of his foot, Sir Charles produced a brilliant crown of electric light in mid air, while musical instruments seemed to be played by invisible hands, whereas the sounds really came from an adjoining room, in which the player sat, and were made to appeur to be produced by the instruments before the spectators by an ingenious contrivance. A contest between Science and the "spirits" in their own chosen feats would be almost as memorable as the celebrated competition between Moses and the magicians.-Liverpool Post.

An Interesting Discovery.

Some workmen, while engaged in laying water pipes in Cividale, Italy, recently encountered a large flat stone. On raising this, a bed of mason work was revealed, in which was placed a stone sarcophagus covered with a marble lid. Within the receptacle were the remains of a human skeleton, some portions of which were yet perfect. Beside the body lay a sword, lance, helmet, spears, a gold clasp and ring, a piece of very beautiful gold tissue, and a flask of water, which was still remarkably clean. The removal of clay from the bottom of the grave brought out the letter GISVL-from which archæologists bave decided that the re mains are those of Gisulf, Duke of the Lombard Marches of
Friuli, who fell in battle in 611, while repelling an invasion of the Avars.

The New Comet.-Professor Parkhurst eays that the new comet may be found, by the aid of a small telescope, 7 south of γ Ursce Minoris, the upper pointer of the Little Bear Between 9 and 10 P . M., it will be almost directly to the left of that sıar. The distance of our new visitor is estimated a about $100,000,000$ miles. In about a week it will be found midway between the γ and Thuban.

Tootiache Cured by Electricity.-Dr. Bouchard, of Paris, says that toothache may be almost instantly arrested by a constant battery current from ten cells. The positive pole is placed against the jaw, on a level with the painful tooth, and the negative pole to the antero lateral region, on the same side of the neck.

The Earl of Caithness, of whose novel form of ship's com pass we recently gave an illustration, has produced anothe invention in the shape of a machine for cleaning and brush ing railway carriages. The device, we understand, is an ex cellent one, and has been adopted by the London and North western Rail way Company.

Soccess, arys Josh Billings, does not consist in neve making blunders, but in never making the same one a second time.

The immersion of hides for hours in a two per cent solu ion of carbolic acid, and then simply drying them, has been recently substituted for the tedious and expensive process of salting them for transportation from South America and Australia, and with most satisfactory results. Bones have been similarly treated for transportation.

HOW Shall I introdece my invention?

 This inquiry comes to us from all over the land. Our answer is: Adopt uch means as every good business man uses in selling his merchandise or n estabilshing any business. Make your invention known, and if it pos eses any mertt, somebodywill want it. Advertise what you have for ale in such papers as ctrculate among the largest class of persons likely to rticle, all over the country. The names and addresses of persons in dif erent trades may be obtained from State directortes or commerclal regis ers. If the invention is meritorious, and if with its utility it possesse velty and is attractive to the eye, so much the more likely it is to find purchaser. Inventors, patentees, and constructors of new and useful
machines, implements, and contrivances of novelty can have their invenionsillustrated and described in the columns of the Soifntific Ampri an. Clvil and mechanical engineering enterprises, such as bridgen, docks, foundries, rolling mills, architecture, and new industrial enterprises of al fnds possessing interest can find a place in these columns. The publish. are prepared to execute illustrations, in the best style of the engravart, for this paper only. They may be copled from good photograph ry to make the necessary sketches. The furnishing of photographs awings, or models is the least expensive, and we recommend that cours preferable. The examination of elther enables us to determine if it it a subject we would like to publish, and to state the cost of engraving in out incurring much expense. The advantage to manufgcturers, patentees, and contractors of having their machines, inventions, or engineering works illustrated in a paper of such large circulation as the Scientific amprican is obvious. Every lssue now exceeds 42,000 and will soon reach 50,000 , and the extent of its circulation 18 limited by no boundary. There not a country or a large ctty on the face of the globe where the pape des not circulate. We have the best authority for stating that some of he largest orders for machinery and patented artcles from abroad have me to our manufacturers through the medium of the Scientific

MUNN \& CO.,

37 Park Row, N. Y.
Inventions Patented in England by Americans.
[Comptled from the Commissioners of Patents' Journal.] From July 7 to July 20,1874 , inclus1v
GAs.-B. Sillman, New Haven, Conn. ammonia from Gas.-B. Sillman, New Haven,
Artificial Stone.-J.o Friel, Brooklyn, N. y.
 Chbmical Trlegraph, mtc.-T. m. Foote et al, New York city oal Cutting machine, etc.-H. F. Brown, indlanapolis, ind., et
 ongtructing Piers, mtc.-C. E. Hill, New York city.
amping Paper. - R. M. Hoe, New York city. Dayping Paprr. - R. M. Hoe, New York city.
ertilizer - R. A. Chesebrough, New York orbr Shof.-G. Dunning et al., Waukegan, ill. Ligating Gas.-E. E. Bean, Boston, Mass. aring boots, etc.-D. Mills, Brooklyn, N. Y.,et al. Maring boots, erc.-H. G. Thompbon, Milford, Conn.
Mainag Gas. -W. Elmer, New Fork city. Match Iqition Slrface.-L. O. P. Meyer. Newtowi, Penohing Tickets, etc.-J. H. Small. Buffalo, N. Y. Regarnerator Furnace.-M. Foster, Alleghany, Pa.
Rendering Fatr, btc--H. S. Fitmad, New York city. Rendrring Fats, etc.-H. S. Firmad, Nem York
Saw and Hande.-H. Disston, Philadelpha, Pa. Screw-Cutting Machine.-C. Sellers, Pblladelpha, Pa Stanal Lantern. - Universal Signal Light Company, New York city
Pindle and bolstrb.-F. J. Rabbeth, Pawtucket, R. I. STEAM Boiler.-G. G. Lobdell, Wilmington, Del.
Stim Engine and Generator.-E.a. L. Robert
strim Engine and Generator.-E.A. L. Roberts, Titubville, Pa. stitching and Stretching Cloth.-A. S. Dismore, Boston, Mabs.
Tucker for Sewing Mactine.-J. Barrett, Buffalo, N. Y.

NEW BOOKS AND PUBLICATIONS.

The Poems of Vircil. Vclume I., containing the Te $\$ 1.75$. Boston, Mass.: Ginn Brothers.
A handsome reprint of classics of worlawide fame, edited with care b translator
Mining Industry of the States and Territories of the Rocky Mocntains, including Descriptions of
Quartz, Placer, and Hydraulic Mining, Amalgamation, Quartz, Placer, and Hydraulic Mining, Amalgamation,
Concentration, Smelting, etc. By Rossiter W. Raymond, Ph. Dr., United states Commissioner of Mining Statistics, etc. Illustrated with Engravings and Maps, and
Colored Geological Map of the United States.
8vo., 540 Colored Geological Msp of the United States. 8vo., 540
pp. Price $\$ 4.50$. New York: J. B. Ford \& Co., 27 Park Place
There is little need to inform our readers of Professor Raymond's ex the wowledge of the topography and resources of the mineral districts of the West. Probably no one has so thoroughly explored these regions,
pregnant with the future prosperity of the whole continent, as Professor Raymond, and certannly no one can speak more authoritatively on the sub jects of minting and metallurgy. The great experience and Information of
the author have been adm!rably elaborated in the volume before us,and we the author have been admirably elaborated in the volume before us,and we
welcome it as a valuable addition to our list of technical and statistical welcome it as a valuable addition to our list of technical and statistica
works. It ts excellently tllustrated, the maps belng espectally commenda works. It is excellently tllustra
Statistical atlas of the United States. Part III.-
Vital Statistics. New York: Julius Bien, $16 \& 18$ Vital Statistics. New York: Julius Bien, 16 \& 18 Park Place.
The thrd part of this magnincent pubication is ready in advance of the others, and conslsts of charts of the proportional prevalence of various
classes of disease and bodily infirmittes, as well as of nationality of the people and other valuable statistics. The whole work is to consist of fifty mapa, with explanatory text, the expenditure for which has been au thorized by Congress; and from the inttlal section sent us, we are able to asart that no more elaborate or valuable compllation has ever been orkanized, printed and pubished. We
the Interior for the copy of this work.

Wiley's american Iron Trade Mantal of the Leading Iron Industries of the United States, with Description of the Iron Ore Regions, Furnaces, Rolling Mills, Besse
mer Steel Works, Car, Locomotive, Steam Engine, and mer Steel Works, Car, Locomotive, Steam Engine, an
Bridge Works, Iron Ship Yards, Stove Founderies, etc Compiled and Edited by Thomas Dunlap. Price $\$ 7.50$ New York: John Wiley \& Son, 15 Astor Place.
The promise held out in this very comprehensive title is amply fulalled the book, whereln Mr. Dunlap has, with great labor, care, and perspi-
acty, glven an elaborate account of every establishment in the country cacity, given an elaborate account of every estabishment in the country
nich makes or uses iron in its trade. It is a complete directory of our oost important industry; and the descriptions of the various mine works, and factories are graphtcally written, giving the most detalled par
ticulars of every branch of the subject. As a book of reference, it is indis ensable; and it is also a very interesting and Instructive work for the pensable ; and
general reader.
The laboratory is the name of a new monthly journal of the progres f chemisiry, pharmacy, medict
on, Mass.: W. W. Bartlet \& Co.

zecent Gunericau aud foreigu zatents.

Improved Bottom Plate for Ranke Chimney.

 Hamilton C. Garwood, Jersey City, N. J.-Thts is a bottom plate for lon. with an opentng and valve at the top, and above the top a plpe ortlu or carrying off the odors, smoke, etc.,from the range when cooking, and r ventllating the room.Improved Burglar Alarm.
James H. Whitelegge, , New York city.-This invention relates to the con ruction of satety bolts for burglir alarms; and consists matnly of a spring olt so constructed and arranged in relation to a hole in the lock bolt tha
hen the lock is acted upon by a key or other tnstrument from elther sid stops the movement of the lock and rings a bell
mproved Joint Connection for Top IChords of Iron Bridges and Improved Girders and Columns.
Walter G. Coolddge and Ed ward Hemberle,Chicago, Ill.- The first inven on consists of a pecularly constructed jolnt plece for wrought tron to hords in bridges having what are known as pin connections, the joint
decebelngmade elther of cast fron or wrought iron. This connection is dapted for the construction of the top chords entirely of wrought iro without necessitating any riveting at the place of connectlon; it furthe
has the advantage of enabling the connection of tles and posts with the as the advantage of enabing the connection of tles and posts with th in, belng made independent of the top chords, and the chord sections betn at on afterware, which expedites and cheapens the labor of the erectio the for columns, consisting of a plate with ribbed edges. Into for iro of the sald plate other plates are fitted to form thickening plates at the nds of the columns. Rolled \boldsymbol{y} beams or plate girders are attached to sald lates connecting two together. A plain plate, straight or tapered, ma e employed between $t w o z$ beams. Pins pass through the ends of the
columna. The advantages are superior strength for a given amount olumns. The advantages are supertor strength for a given amount of exposed parts for irspection and painting.
Improved Boiler Washina' Machine.
Reuben Wood, Grand Ledge, Mich. -Ths is au tmproved washing ma
chine so constructed that the steam and hot suds mas be poured upon the chine so constructed that the steam and hot suds may be poured upon the othes while they are in agitation and constantly changing their places, ndmay flow off, carrylng the dirt with it, and may leave the dirt in the
oottom of the boiler, so that it will not again be carried up and deposited pon the clothes. By sultable construction, as a cylinder is revolved. tha lothes will be carrled up by the wings and flanges nearly to the top of the cylnder, when they will give way in the middle of the mass, and fall back ato the bottom of the cylinder, so that they will be all the time ehanging their position, and all the tim 3 will have streams of steam and hot water
discharged upon them, so that they will be washed clean in a very shor me. The water, asit flows back Into the space beneath the false bottom, rirtes with it the dirt taken from the clothes, and leaves it there, so tha very little of said dirt will again be thrown upon the clo thes.

$$
\begin{aligned}
& \text { Improved Steam Boiler. } \\
& \text { Sloomfleld, Iowa.-This is a boit }
\end{aligned}
$$

Carlos A. Clark, Bloomfleld, Iowa. - This is a botler constructed with two steam domes connected with each other by tubes, and with horizon alsteam.generating tubes by vertical tubes. The steam may be use
rom the upper tube or from elther of the domes, as may be found moss rom the upper tube or from elther of the domes, as may be found mos
conventent. With this boller, fuel may be utilized to a great extent. No arge body of wateristo beheated, and danger of explosion is less than with ordinary boflers.
lmproved Horse Blinder.
John w. Kennedy, Central Vlllare, Conn., assignor to himself and Willam H. Kennedy, oberinn, o. -This invention consists of a blinde made Independent of bridle or halter, and applicable to prevent horse
from jumplng over fences and thereby escaping from a pasture. It passes nder the eyes, stopping all vistion from stde views as well as front, and a he horse approaches a fence, not seetng it or the ground on the opposit ide, he fears to and will not leap the fence.

Improved Curtain Fixture,
Levi bradbury, Bennington, Vt.-The brackets are made of wire with one ormore convolutions to form springs, and with prongs, so that they may
bedriven Into the wood, and fastened without seraws or nalls. These edriven Into the wood, and fastened without serews or nalls. Thes required amount of friction to hold the curtain in any desired pusition.
Improved Hay Elevator.
Uel . Shockley, Ringilie, Kan. - -n this hay elevator a carriage is ar
anged to travel hortzontally and carry a bundle of hat suspended by the ord, by which movement is imparted to the carriage. The improvemen relates to the construction and arrangement of parts, whereby, when the
carrlage has reached the place of deposit for the bay, the suspending rope arriage has reached the place of deposit for the bay, the suspending rope he load or bundle to descend.
Richard Garstang, St. Louls, Mo.-This invention consists of a feed wate heater composed of two cast metal oval heads, wlth short eyllnder attach ments, connected to an intermediate cylinder containing tubes fitting int tubesheets in the cast metal cyllinders. This forms a heater of three com
partments, in one of whichis a filter,and in another of which the feed wate supplled in direct contact with the waste steam, after which it is force by a pump through the other compartments, also through the tubes sur ounded by the exhaust steam, and also through the filter into the boller In a way calculated to be very efflctent in heatliug the water.
Improved Hox Ringing and Marking Instruments. Philip Listemann, Collinsinile, ill.-This invention consists of pincher constructed that a semicircular ring blank for the hog's nose is formed
and the ring blank inserted. The partly tintshed ring blank ts placed in the rooves of the Jaws, and, in thls postion it la allpped on the upper cartllas of the hog's nose, the jaws are compressed, and the ring blank is inserted. he blade for marking a hog shuts into one of the levers.
Improved Machine for Making Hollow Cylindern ot
Marble D. Keeney, Rockton, Ill.-Tnts invention consists of a formin oller, which is keyed to the free end of a shaft driven by suttable power,
and constructed of two semictrcular sections. These are plvoted by thet dametrical armsand fulcrumed at some distance from one joint of the ections, while the otherjotnt is acted upon by a plvoted wedge plece, so as to hold the edge of the contlnuous paper firmly in the clamping joint by Improved Journal Bearing.
De Witt C. Clough, Auourn, N. Y.-This incention co ox, cast with longitud'nal side grooves in channels, shoulders near the face parts for producing a frm binding of the Babbit
$\xrightarrow[\text { Improved Hay and Cotton Press. }]{\quad \text { Hiram Lupher and Dexter S. Munger, Tullahoma, Texas }- \text { This invention }}$ relates to nover means for operating tho follower of of any or cotton press,
the object belig to give a maxtmum purchase in apply ing the muscular strength of men, and to enable the ereatest weight to be compresesed into the smallest bulk. This not only produses greater conventence in th
mantpulation of the bale, but dimminthes the frelght chargeable therean rallroads and steamer

Improved Cooking Apparatus.
Mary A. Scott, Patoka. Ind.-This invention consists of a metal case con
taining a steam bofler, oveus, and steaming chambers, adapted to be placed on a stove or range, to generate the steam for heating the cooking cham bers. It is destgned to distribute the heat better, and thus utilize it to a greater extent than is done in the common stoves and ranges.
Improved Corn and Bean Planter.
George B. Smith, Coburg, Can.-The object of thls invention is to plant
corn, beans, etc., in rows of any width, and to fertllize and cover the same corn, beans, etc., in rows of any width, and to fertilize and cover the same In one operation. It consists in an upper frame contaning the fertilizer
and grain boxes and mechanism actuating the same, and a lower or supplemental frame containing openers, spouts, coverers and rollers attached to the upper frame by links, and elevated by means of an elbow lever. A
cylinder in the grain boxes having cavittes upon its periphery is actuated by a squared shaft; and as it revolves instide a jacket of sheet metal, an arm attached to its end alternately opens a feed sllde admitting the grain which
fills the cavtlies in sald cylinder ; and the sald cavitics, when In verted from
 grain boxes, except that the hopper ts provided with a stitrer, and the cyl-
Inder has no jacket. Both grain and fertllizer boxes are laterally adjusta. Inder has no jacket. Both grain and fertllizer boxes are laterally adjusta-
ble upon the squared shafts, as are also the bars of the supplemental frame ble upon the squared shafts, as are also the bar
supporting the opener, spouts, coverers, etc.

Improved Rolled Metallic Bars. Reuben P. Colton, Gananogue, Can.-This invention is a new manufac ture cossisting of iron rods or dars from three fourths to half an inch in cross section, rolled from plies or fagots, a
jecting ribs parallel to the planes of plling.

Improved Car Axle Lubricator.

John W. Bollman and John G. Ernst, Baltimore, Md.-This invention elates to a novel and economical mode of applying lubricants to caraxies, nd consists in ustng a spring, one or both of whose ends clasp a side o
ides of the Journal; while, on the inner side of each of these ends is at ached the end of a wick which is saturated with and has part offits length resting in the lubricant.

Improved Bedstead,

Stephen P. Leake, London, Can. - This Inventlon relates to the construc
ton of cribs, cots, cradles, and bedsteads, so that they may be made cheaply, durable, and without the use of metallic fastenings, such as screws, catches, or hooks : and so that the labor, machinery, and expense
of lettlng the fastenings into the frame, and fitting them thereto, may be entirely avolded.

Improved Thrashing Machine Attachment. Asa Low, Shell Rock, Iowa.-This invention consists in causing the grain
to pass from the thrasher cylinder to an upwardly moving endless straw carrler made of leather belts or wooden slats, and then to reach the rattle rake whlle the grain that drops from the straw falls upon the bottom o
sald rake, and 18 carrled back where the apron deposts, sald rake, and is carried back where the apron deposits. The grain that is
blown over the ordinary thrashing machine riddle passes directly to the riddle of the inventor's attachment ; while that carried a way in the straw is first dropped through the ventllators, and then returned with the straw carrier on the lower floor of the stacker to the same destination.

Improved Stump Extractor.

Randolph P. Cory, Consecon, Can. -This invention relates to and con-
sists in mechanical moans icr extracting stumps and roots of trees from sists in mechanical moans icr extracting stumps and roots of trees from
their native soil, in lifting heavy bodies, and in transplanting them with convenience, dispatch, and faclilty.
Improved Apparatus for Hoisting and Tiering Cotton.
James B. Wendel, Memphis, Tenn.-This invention relates to means hereby cotton bales may be raised and transferred to any given position wo as to form a succession of thers or piled bales in a bullding.

Improved Stove Grate.

M. Augustus Withers, Pottstown, Pa.-This invention relates to stove grates, and consists in novel means whereby the cllnkers may be detached
and removed from one part of the grate without the necessity of tipping, disarranging, or emptying the whole grate.

Improved Horse Detacher.
Thomas E. West, Nitholasville, Ky.-In this device the traces are released from pivoted levers by pulling a strap and allowing the levers to
turn into a position at rightangles to the whiffetree, to which they are piroted

Improved Railroad Car Stove.
John H. Mahrenholz, New York city.- Rallroad car stoves are usually so constructed that, when the car upsets or the stove is displaced by a violen of the helpless passengers is added to the other horrors of a rallroad accident. The present inventor arranges a closed top firepot and drop flue in a cyllnder having an openwork top, so as to present a large area of heating
surface, and to allow the air free access to the pot and flue on all sides, surface, and to allow the alr free access to the pot and flue on all sides,
and free escape through the top of the cyllnder. He also arranges a water reservoir and steam generator beneath the floor of the car. The stove it
firmly attached to the floor of the car, and cannot be readily displaced. It may be turned over or bottom side up without discharging any fire into the car, and is, therefore, safe in cases of accident

Improved Balanced Slide Valve.

John T. Hill, Warren, Pa.-Sllde valves for steam engines, as usually
constructed, are subjected to the full pressure of the steal constructed, are subjected to the full pressure of the steam, and conse-
quently wear and cut on th.efr faces, and frequently become useless. The object of the present invention is to so construct a valve that it will not elastct top plate or follower confined between flange plates on the sides and ends of the valves. The valve having this plate thus arranged is placed on the face of the cyllinder within the steam chest, and the steam chest cover put on, which forces down the plate against the pressure of the
springs. The reaction of the springs and the action of the steam on the

hip for

Improved Table for Vessels.
Captain Edward P. S. Andrews, Havilah, Cal.-This is an improved table
for use on vessels,constructed with sectlonal top leaves,swinging in sultable supporting stanalards by means of welghts connected to them by plvoted lever rods for the purpose of retaining a level position of the top during

Improved Bluing Package for Laundry. Alexander M. Van Lier, New York city, assignor to himself and Freder
ick R. Gllespie, same place,-This invention relates to the manner of put ting up bluing used for laundry purposes, and consists in a perforated glass casing in which the bluing bag is enclosed.
Improved Steam Boiler.
Phillp T. Brownell, Elmira, N. Y.-This boller has a flue leading to its
smoke discharge pipe, connected with a silding fire box, to take off the products of combnstion when sald frebox is withdrawn. The sllding fire
box is provided with allparranged to close the flue when the firebox has been pushed under the boller. The frrebox is also comblned with a plate
hinged to the boller base, covering the top of the firebox when said box hinged to the boiner base, covering the top of the firebox wher
drawn out, and swinglng up out of the way at other times.
Improved Game Apparatus.
$\begin{gathered}\text { Henry L. Crist, Middletown, Pa.-In playing this game the object is to }\end{gathered}$
throw ringsinto the colls of a spring, so as to be suspended. The spring is vertically fastened to a a altable standard. It is also a part of the game to throw the rings over pins on the table beneath. The suspended ring ess values.

Improved Vapor Burner.
Frederick A. Sawyer, Houston, Texas, assignor to himself and Addison
H. Baldwin, same place. -The oll is carried through wick to H. Baldwin, same place. - The oll is carriled through a wick tube to the
eservoir. The burners are simple perforated tubes, radtating from the anter, but in communtcation with an annular generating chamber whic ted by base of the reservoir. The flow of oll to the chamber is regu and are provided with pans to catch the drip. The liquid consumed may be
any of the llght hydrocarbons, as gasoline naphtha, etc., and is carried up y of the light hydrocarbons, as gasoline, naphtha, etc., and 18 carried up nters the burners by the high temperature caused by the flames.

Improved Adjustable Window Reflector.
Charles Christensen and Charies as forits object to furnish reflectors for windows, so constructed tha
hey can be readily adjusted to give an inmate of the room a vlew of the treet in both direetions without belng seen. It consists in a simple ar rangement of gearing so constructed that, by turning the knob, the reflec
ors may be extended at any desired angle, as the observer may desire.
Improved Fruit Dryer.
Judson Allen. Everett, Mo.-The hot alr enters into spaces at oppo site sldes of the drawers. These spaces are separated from the space
under the lower drawer by plates. They are also separated from the closed below the upper drawer by curved deflecting plates. The dram rs are arranged with a passage, alternately on opposite ends, and hav slots or perforations in the bottom, to allow some heat to pass up be-
ween them. The heat is supplied to the drawers mostly from passages the valves, which are graduated so that each one will take its due mea are, the upper one entlrely cutting off the space when necessary. Th drawer, or the next to the upper one. The dampers are connected to evers outside of the case by
the valves to the alr currents.

Improved Finger- Ring.

James Annin, Le Roy, N. Y.-This invention consists of a spring fillin ece, to spring into the ring inslde of the flinger after it is put on, to fil nd secure it against belng lost. The fllling piece is provided with points spring into sockets in the ring
overlap the edges of the ring.
Improved Ditching Machine.
Thomas F. Cocke, St. Louls, Mo.-Ont the right hand side of a plow 1 rranged a wheel the rim of which 18 a long endless belt of plates jointed
logetherand running up over a sprocket wheel on an elevated frame, and
 arry it up and discharge it into a spout, to be thrownupon the bankat the carry it
side.

Improved Wind Wheel Toy.
wheel and staf, New rork city.- This a toy wind wheel consisting in Wheel and staff, the formerbelng provided with a sleeve box and plnjour
al, and the shaft with one or more ferrules. The wings may be placed at ny desired ang
it will revolve.

Improved Link Block for Locomotives.
Wimam A. Alexander, Moblle, Ala.-This link block is not constructed of
ne solld plece, as ordinarily the case, but composed of two longitudina arts, whose adjonning sides are produced under suitable inclination fo the introduction and close fitting of a wedge plece; the latter is adjusted
from time to time, and forces the block parts closely on the lluk, pro

Improved Washing Machine.

Willam E. Banzett, Rrooklyn, Pa.-This invention relates to that clas f machines that combtne in one apparatus a washer and wringer. It condged or grooved slats, over which vibrates one or more rubbers attached to the ends of a pair of levers containing a wringer. Sald wringer oscillates
with the rubbers when the same are in operation. and when not in use ts Fith the rubbers when the same are in operation. and when not in use 18
olded out of the way in the receptacle. Sald receptacle is provided with double hinged lid, which, in connection with a pair of hinged leaves upo the sides of the washer supported by brackets, forms an ironing boar hen the wringer is folded within the machine

Improved Wheel for Vehicles.
Milledge B. Wever, Johnston's Depot, Edgefleld county, S. C.-This Inven
ton relates to methods of adjusting the spokes of vehtcle wheels to the tion relates to methods of adjusting the sporkes of vehicle wheels to the val-shaped thimples terminating in screw-threaded stems. Sald thimble ded with a nut. The of the spokes, and the screw eaded stem pro cavity in the felly, and the nut forms a shoulder by turning whtch the
ength of the spoke is increased and the connection correspondingly tight ned, the oval shape of the thimble preventing the same from turning upo

Improved Hay and Cotton Press.

Fielding L. Kirtley, Cleburne. Texas.-This invention relates to tha trong, substantlal box, for the purpose of holding the material to be to which the bale is compressed. Said box is mounted on rollers upon rame work, one set of which are contaned within a pair of keepers which allow the box to turn upon the frame and assume a vertical position when
the same is to be flled. Securely attached to the box are metalict straps rovided with links, one set of which eugage with a ratchet toothed bar
wove and below, and the other set, with a rack, on each side of the appaatus. Sald rack is contalned withtn a frame work mounted upon rollers or. In the same frame with the rack is a shaft, bearing ptntons which gage with the racks, sald shaft belng driven through cog wheels by a ratchet wheel made fast to sald shaft. As these levers are operated, th movable frame is advanced, and a follower block attached to the same is forced 11
a bale.
Improved Car Wheel.
Isaac Dripps, Philladelphia, Pa.-The wheel is formed of wood and meta
Improved Jigger for Separating Ores. the arrats bottom and central tubular extension, which is vibrated rapldy by sultaIncllned in op ositte direction to the bottom of the recelving receptacle,
and provided with vertical downward and provided with vertcal downward extending gulde lugs, and a mechan ral bottom extension of the recelving receptacle is gulded in its motion a sleeve, while he upper part of the same is gutced in a surroundin motion. This sildes up and down in the upper wall of the maln casing and discharges intermittently the lighter part of the ores when its perfo rated inclined inm rises above the upper rim of the casing, conducting the lighter parts off to a chute of suitable inclination, extending around the
main casing. The ore or coal is fed through a suitable hopper to the cenof the same. A platon va in connectlon with the bottom extension of the recelver round the conctial
base of the manceasing or tank, for the regulation of the flow of water rom the extension to the interior part of the tank where the heavier par
ticles are discharged. An inclined casing connects with the bottom ticles are discharged. An inclined casing connects with the bottom of th tank and Incloses the ore elevator for carrying up the heavy particles an
discharging them above the water level of the tank.

Improved Washing Machine.
$\begin{aligned} & \text { John } \mathrm{S} \text {. Headen, Freeman, Mo.-This invention consist in combining, } \\ & \text { With the beater or press board frame, a cover, in such a manner that the }\end{aligned}$ of is free to rectprocate with the beater frame for preventing spattering of the water, the cover betng also detachab
clothes to be readily finserted and removed.

Improved Candle Holder.
Willam Ulrich, Newark, N. J.. assignor to himself and F. Haupt, sam place. -This invention relates to a candle holder for use on Christmas
rees. Spring legs are soldered to the under side of the sucket base, and bent in such a manner that they pass sidewise of each other and give t the curved parts, immediately below the pont of intercrosstog, a spring
action, so that this part not only fits to the branch of the Chritinas tree but also adheres firmly to the point to which it has been applied. The ower parts of the legs are spread out in inverted V shape, an
ably connected by a plece of wire to which a welght is hung.
Improved Sewing Machine.
nsists of a guard attachment on the buiged take-up plate used in connee ion whe the under thread, to a machine in which a commerclal spool is the old loop. The second part conststs of an twproved arrangement devices for actuating the loop spreader; and the third part consists of an mproved arraugement of devices for operating the under thread spool

Improved Farm Gate.
George Hoskins, Gllead, Mo.-This invention consists of a gate which Indes by its double end plece along T -shaped pleces hinged to the maln
ost, and is retained thereon by pins passing through perforations of the end pleces. A lever, plyoted near the middle part of the gate, ralses th gate by its plvoted upright rod near the fore end of the lever, whille the the supporting pins. The adjustment of the gate for the passage of sma tock above the snow or other purposes is easily accomplished.

Improved Pill Machine

Plerre Cauhape, New York city.-This invention consists of a couple o Pets of pointed hooks in a jolnted stock, which opens and closes the hook bar, for holding the pills so as to be taken by the hooks for dipping them in the gelatlu coating bath; also, a socket clamp for taking the puli fom the hooks after the first dipping ; and also a spring clamp for taking the pills from the socket clamp and dipptng them a second time in the
ooating bath. A spectal advantage of this apparatus is that the pills may coating bath. A spectal advantage of thls apparatus is that the pills may
be dipped each time exactly to the center, so that the two coats will mee

Improved Horse Shoeing Harness

consists of he horse; aleo, straps from the breast strap to the post at the rear ; aleo githe horse from ging and breast straps and rearing or kicking. It also consists of a strong saddle, having a windlass on it for raising the oot to be shod by a rope, sald windlass betng adjustable along the top of the saddle and capable of turning as required for hittching to the difieren eet; and it also consists of a strong bar on each side of the saddle, for Ing and buckle for lifting and holding the feet whlle belng shod; also, fo
 rom the windlass to the foot to be lifted.

Improved Gate for Railway Crossings
Elmer Ridge, Phtladelphia, Pa., assignor to himself, Amos
anc C. Shallcross adelpha, Pa., assignor to himself, Amos H. Taylor, and
 rack into recesses of the ground, and hung to side standards, comblued
With connecting lever rod and lateral crank shaft with lever handle, so as o be rapldy and easily thrown into position on the approach of a train
or preventiog the passage of vehicles or persons over the track, and in stantly folded out of the way after the train has passed.

Improved Hot Air Furnace
s hortzontally, and is made dlamond-shaped in cross section, a little larger one way than the ther, and arranged with its greatest diameter in its verticalaxis. Flange that the cold alr, which 18 first admitted to the lower part, wlll ail be cause o pass through the fire chamber by tubes into the uppcr part of the heat
og chamber. The upper set of the horizontal tubes of the radator in the pace above the furnace is supported directly over the top of the furnace by two short flues, discharging the smoke and hot air from the furnace int 1. The other tubes are suspended over the sides of the furnace by middla ad end flues. Disks are pla:ed on a rod, which extends along the interio orking the disks whtch constltute a damper for controlling the escaplng moke, hot air, etc.

Improved Vehicle Spring Brace.
Andrew J.McRay, Alma, Wis.-The r he rear axle, and its for ward end is connected with the forward bolster. A
od passes up through a hole in the reach, through a hole in the brace, and the upper end is firmly secured to the body of the vehicle. The rod has a he reach. By this construction, the rod and the brace will prevent the上avemex ole, and will also prevent the springs from jumping up, so that the spring Improved Drawing Board.
Hitch the ge or glue, and without producing stiff glued edges or ridges, and therebs rooves running parallel to and at a sultable distance from the edges of th same. The inner sides of the grooves are sllgh tly finclined, and the fasten ing strips, of the width of the grooves, are pressed down over the edges of Improved Tile Machine
Ira P. Merwin. Syracuse, N. Y.-This invention relates to that class o machine in which the plpe is mounted on a vertical core in a vertcal cas
supported on a base plate, so that the corecan be removed from the molde pipe, and the latter removed in the mold case to dry, and consists of a core standard or core base for the support of the core, detachably connected to ing them readily; also, a novel mode of fastening the core standard in th machine.

Improved Sink Trap.
Henry Miller, Johnston, R. I., assignor to himself, George Miller, and as to afford a considerable fall of water, and discharges into the cup of th rap. Thence the water escapes over the edge in such mannerthat smal arried out of the cup and down the plpe. Lugs are cast on the stenc rap, with a bote cast in for attaching the trap by lugs on it to be screwe
p by the nuts. This trap ta adapted for the use of revolving scrapers fo eaning it out if required in case the stralner be screwed down, the scr ers betng fixed on arms under the strainer connected to the plvot of urning knob at the top of the strainer, in the center.
Improved Paint Compound.
George W. Pond, Brooklyn, N.Y., assignor to Mary E.Pond, same place.-
This invention is a paint which readily drles and hardens under water This invention is a paint which readin dries and hardens under water and is consequently very valuable as a paint for all marine vessels. It made from \mathbf{c}

Sutiness and exrsoual.

Annealer Wanted-To take charge of the
 $*$ Co., Dayton, Ohlo.
To Engile Builders and Boiler Makers-
 For Solid Wrou ght-irion Beams, etc., see ad. Tor lithograph, etc.
Engines 2 to 8 H.P. N.Twiss,, New Haven,Ct. $\underset{\text { a emar manufacturing business, in a very healthy, thriv- }}{\text { Pat }}$ tng village, where coal and lumber are
of Box 204, Canton, Brad ford Co., Pa.
No Keys, Kev-seats, Set-screws, Bolts, or
ping used in fast Holds firmy; can't be thrown out of oalanece: easily
moved ; can't injure shattlug. One pulley sent on trial to any part of the U.S. Address A.B. Cook \& Co.,Erie,Pa. Wanted-A Good, CCeap Cotton Compress.
Address A. shorter Cald well, Rome, Ga. Stean. Air Pump Wanted-A Foond Second-
Haud Steam Air Pump, capable of a pressure of at least

 Clock Movement Stamping Cos., send Price
List to J. F. Ronan, Boston Higland $\%$ Mass. I have a small brass (stamped) article that
I want manutactured. S . K. Seelye. Hudson, Mich.

 Scientific Books.- Send stamp for Illustra
ted Catalogue. E. \& F. N. Spon, 446 Broome St., N.Y. Wanted - Circulara and Price Lists from
Makers of small Water Motor3, sultable for running light machnery. Address Porter Blanchard's Sons
Concord, N. H. Safe lnvestment.-For Sale-Big Muddy
Coal,TImber, and Farm Lands. The whole or one inter-
 rom surface: ive improved Farms, with 246 acres under
fences ; Timber, such as white and Purr Oak, walinut
 hrough sald lands, two miles rom Murphs sboro, the
county seat of Jsckson County ,ull. Wull sell the whole
 St. Clair Co., Illinols, Belleville, St. Claar Co., Ills.

 Models of all kinds made to order. All kinds
of light metal work. H. B. Morrle, Ithaca, N. Y. T'ornado Windmill Co.,Elba, Genesee co., N.Y $\underset{\text { Spinning Rings of a }}{\text { Sither }}$ Superior QualitySeud for sample and price list. The Pickering Governor, Portland, Conn.
 The Improved Hoadley Cut-off Engine-The

Mechanical Expert in Patent Cases. T. D.
stetson, 23 Murray st... New York. Gas and Water Pewe, Wrought Iron. Send
Gor price list to Batley, Farrell \& Co.,. Pittsourgh, Pa. Forges-(Fan Blast), Portable and Station-
ary. Keystore Portable Forre Co, Phlladelpha, Pa. ${ }_{p}$ Roilers and Engines, Second Hand. Egbert For Surface Planers, -small size, and for
Box Corner Grooving Machnes, send to A. Davis, Low
ell, Mass.
TThe "Scientific American" Office, New York,
18 nitted with the Minature Electric Telegraph. By
 of the establishment. Cheap and effective. Splendid
for shops, ofllces, awellings. Works for any distance.

All Fruit-can Tools,F erracute,Bridgeton,N.J. Brown's Coalyard Quarry $\&$ Contractor's Ap-
paratus for hoistung and conveying materials by iron cable. W. D. Ad Adrews \& Bro., 41 Water St., New York.
For Solid Emery Whels and Machinery, Lathes, Planers, Criills, Milling and Index
Machnes. Geo. S. Lincoin \& Co., Hartord, Conn. Hydraulic Presses and Jacks, new and sec-
ond hand. E. Lyon, sio (irand Street, New Tork. Dickinson's Patent Shaped Diamond Carbon
Points and adjustable nolder tor working Stone, dress.
 Peck's Patent Drop Press. For circulars,
address sillo, Peck $\&$ Co., New Haven, Conn Small Tools and Gear Wheens for Models.
List tree. Goodnow WIghman,23cornnlll, Boston,Ms. The French Files of Limet \& Co. are pro-
nounced superior to all other brands by ail who use them. Jeecided exceellence and modederate cost thave made
these goods popular. Homer Foot $\&$ Co., Sole Agents Mining, Wrecking, Pumping. Draingge, or
Irrigating, Mactinery, for sale or rent. See advertise-
 A F. Havens Lights Towns, Factories, Ho
tels, and Dwellings with Gas. $4+$ Dey street, New York. Bert Philadelphin Oak Belting and Monitor
stlched. C . Arny . Manutacturer, 301 \& 303 Cherry St.. Phuladelopha, Pa. Send tor circular.
Temples \& Oilcans. Draper, Hopedale, Mass. Buy Boult's Paneling, Moulding, and Dove-
talling Machive. Send for circular and sample of work. talling Machine. Send for circular and sample or
E. C. Mach'y Co., Battle Creek, Micc... Box 2π.

Engines, Boilers, Pumps, Portable Engine For best Presses, Dies and Fruit Can Tools, Price only three dollars-The Tom Thumb
Electric Telegraph. Δ compact worsing Telegraph ap paratus, for sending messages, making magnets, the
electric llght, 1 IVIIng alarms, and various other purpose Can be put in operation by any lad. Includes battery, key ano wires. Neatly packed and sent to all parts of
the wrold on reecpt of price. F. C. Beach \& Co., 263
Broadma, New Yort Rue's "Little Giant" Injectors, Cheapest
and Beat Bolle Feeder in the marret.
W. L. Casae $\&$

H. B. will find a recipe for modeling wax on p. 58, vol. 24.-A. J. L. can remove statns of ink and
ruit by the rectipes on p. 171, vol. $30 .-$ C. A. B. will find

 japan small tin artulees by the process described on p .
132, vol. $24 .-\mathrm{J}$. E. can jolu pleces of rubber by usiag the cider sweet by followting the directions on p. 10 vol 2 -F. C. R. can enamel leather by the process. glven on p.
122 , vol.27.-P. O. F. and W. R. T. do not send their addreeses.
O. P. B. asks : What mode of procedure is
necessary to prevent palut flom bllstering and cract Ing? I have three doors, all facing the east, whicl
bilter exceedingly, from the 8 ize of a pea to that of Mexican half dollar. I have had them palnted twice to he last year, each tlme with the same results, blister
ing, scallng, and crackl|ng. They are plne ot the be
 would hot oll, Arsta applica, help the case p P is the use
of shellac any advantage? A. The cause of the buse of fhellac any adrantage? A. The cause of the bisb-
ierign 18 most probably a too rapld execution of the work. After the Arat coat of palnt 1s put on, time
should be allowed for it to enrink tno the wood and get hard upon the surface before the next coat is ap.
piled ; and the same for each coat, when there are more han two. Use solrtits of turpentine to thin the palpt and not benzline.
F. A. H. sa
 sameforce as was used dn projectung, by reason of the
reistance of atmosphere, whereas the atmosphere lias just as much resistance one way as the other. A. If
jou have any idea that our statement was incorrect, ou can eash y
friend to throw ball mattorby the an experiment. Ge far and you catch It as as it returns. Thene stand off two or
three feet from him, and ask him to throw the ball to hree feet from hm, and ask ham to throw the ball to
you, with all his force, and agati catch $1 t$; you will thus e able to determine whether the for Iturnag are the same. We do not thin that what
Inven any rule for the horse power of steam bollers It you have any tuformatton on the subject that you
would llie to impart, we shall be glad to hear from
W. E. D. says: I am building a conveyer
 Yeyor be made to work?
the conveyor tin two parts.
J. J. T. asks: Which will discharge the most water, two 6 Inch plpes or one 12 thch pppe? A
All other things beting equal, the discharges of wate from plpes are as the areas of thetr cross sectlons. A 12
nch ploe has an area of 11309076 and $\mathbf{a} 6$ Inch plpe, ot 288.244. Therefore a
of two 6 Inch plpes.
J. E. asks. What will restore the color to
black coat which has been staned by persplratito . Try ammonia. $\underset{\text { wax is recommended for boftenng violin tones. In what }}{\mathrm{L}}$ Wax 18 the best to ouse? A. Use a bard whte wax, and tratned.
 bles up and Iorms, atter :cooling, a honeycomb. We
have tried borax, and warmed the mandrel ; but we ado no better result. What wwill prevent ti? A. Dr
he molds and coast the rollers upright, uspending the teelshatt If teecessary, and cast the roller rather long e sound: and cutting of the top end of the roller, t bring tit ot ots proper length, will take
oules that are llable to remaln there.
J. A. B. asks: A freemasons' lodge has
aillin a bick buiding, using the second Etory. The
 Ing, the usual method of deafentug was used. namely, a
foor midway in the jutsts, and then an Inch or so of plaster, and then the floor latd down as usual. But this
aills to deaden the sound, in fact it seems to make more hollow souuding, and the notse comes below too on the floor, sty 1 foot apart, and then allt that even With mortar, aud lay another floor tight on that; wil
you please inform us about it? Would several tulck
. neseck of slteathing paper, tacked down under the car. with a loamy mortar, which 18 too often the case, and has sluce shrank Irom the wood and cracked, and per.
haps turned to dust. If there were possible to take up the floor and put in a fresh layer ot good lime mortar
it would help it. If not, two thicknesses of bullding paper lata under the carpet would mprove 1 .
R. M. says: 1. I have a boiler albout 16 nches in lengh and 8 in diameter. What would be
tee best 8 隹e for a oylinder for sucha boiler? A. You shouse
trioke. 2 . What could I best make it of? A. Either of iron, brass, or white metal. 3. What should be the
power to the pressure per square inch? A. It will equal the pressure on pitans in pounds, multiplted by What power is required to run an ordinary semting What power is required to run an ordinary sewing
manchise
an average. About one thirtiteti of a horse power, on
W. S. P. says: I I have hit upon a crank
wives two strokes of the pitman to one revolu.

 if uer han on invention was
the purpose 18 quite old
M. \& $\&$ H. ask: $:$ Will leather last longer than
ruber, if continually under sweet water, and bent forrubber, if conthually under sweet water, and bent for
ward and back under a little straln? How long will each last? Is there any other fiexible stuff bee dur
bie for the for the same purpose? A. Rubber will generally be
the more durable of the two. We can not ans wer you
A. S. asks: Having to renew the firebox to
my hot arr engine, having a cast Iron botom with my hot air engine, havlng a cast iron bottom with
fange on the same and sties of heavy sheet tron, I Ind it mpossible to draw the sheet tron to the bottom tlght although the riveta are only \mathcal{Y} \& Inch apart. Can you tel
ne of a cement that will close them and withatand the heat, the bottom belng often of a white heat? The
leaks are emall. 1 have tried pulverzed Arebrick parts, with 1 part plaster of Parls, also 1 tharge and gly.
cerin. The former 18 the beest, but \#lakes under the 1 .

 hat ring to go on, and what t the spectied rule to to take tn practical work of that kInd? A. Set your outside
callipers to just perceptibly touch the shaft, and your aside callipers on a pointed wire gage to barely touct in thecollar. Why do you not try the spinde in the collar while the latter 18 in. the lathe? If the collar fo
oo be a permanent fuxture why not wre it and the arrink it on? There e 8 on rule a a to the allowance on
callipers for a driving fit it is to
 B. H. S. says: I am runing an engine of
 Therels an opening tn steam plpe from steam dome to
 not 43 nches dtameter, wth two 16 Inch fues in each. A from the back end of bollers. The dimenstions of steam drum are 18 Inches damett:r, 14 feet length, and there are three 4 Inch opentngs tn conection. At certato
times, just after fring up, we have a severe ruahning and
 Issing sound,
rom one boller to the other; this 1 last
for 30 or 4 seconds and 18 then followed by a heavy thumplng and
rumbling notse and a quick sudden Jarling of the boilris. All of this probably lasts for 6 seconds, and at low tages of water and high pressures of steam: and the
eedle on the steam gage shakes and trembles, and the Water leaves either the emddale boller or one one of the side
boilera. Can you tell me what 1 the trouble? I think he opening tu the mud drum connections are too hrfe, and the water passes from one boire
other from uneven frimg. A. The trouble eems to be caused by excess of pressure on one boller. due to un.
ven IIrng. We have frequently pointed out, on form: occastons, the trouble and danger likely to resul
 endently of all the rest, and 80 that
orced from one boller tnto the other,
G.\& W. say: Sixty days since we put up a Inch return flues, to run 12×30 englne twenty feet astant, and connected thereto by a steam pipe of 2%
inches dlameter, with a furnace 18 tnches deep and cular tn shape, with slde walls 3 inches from boil er. The side walls are carried up to make fre llining
high, and there is a combustion chamber, at rear of Mgh, and here in a combustion chamber, at rear or
bridge wall, 66 nnches deep, divlded by two walls equal distances apart, and carred up like the bridge wall; but
it fred hard and ate up too much fuel.
We changed 1 it several times with no tmprovement, and now have the brlage wall 5 feet 2 tnches below the botler. We took
down the division walls of combustion chamber and Ailled it up to withnt from 9 to 12 tinches of bolier; but th is not as good as at arrst, iring much harder nud no
beeplig steam so easily. We use shaving from yello pine for fuel. We somettmes run three planars, bestdes
acarpenter's shop. We require 100 lbs. steam to rup averythng well, but cannot keep it up now by any kind eet high. Our chminney 18 an in thes dameter and agan. A. Wt may be that your furnace 18 not lark
enough, that your grate bars sare of the wrong kind or engtne, that the botlier ts is not large enough for the work, etc. Matters of this k nd are best settled bya good en Stner, after an Inspection.
J. D. asks: 1. Of what horse power should
 Sipp river) with a depth of 18 tnches, wh tha 12 tinch
 cluding tue welght of the boat. 3. Would a propellee
orstern wheel be the most eflcient? A. Stern wheel probaly. 4. Which would be the cheapest? A. There
pren
prent
A. M. S. asks: What will be the pressure
on 128 square feet when the wind blo ws agatnst it at the rate of 40 miles per hour, 20 milles per hour, and

2. Would the pressure be the same if the air was still,
and the plane moved agalnat tit at the same rate? A. Yes.
n.
y. tis that of silver. 2. Can th be procured In the this coun.
N. B. S. asks: Where was the first railroad
on which the itrst locomotive engine was used, for con veyng pasengers or frelght, in thls country? What
was the date thereof? A. The late Joseph Harrison, Jr., statest that the frrst locomotve run In Amertca was the "Lion," bult at at Stourbrlage, England,
the Delaware and Hudson rallway in 1889.

nae the steel for other purposes? A. Nake the steel
red hol, and leare in a heap of dry sawdust till cold.
G. D. asks : Suppose a man were stationed
e every degree, or ouly four minutes of time apar round the globe, and a man ahould start from New
York, asyat noonon Monday and keep pace with the un, which station would drrst inform hlm that it was Tuesdy noon? A. At 1800 fro the merlitan from
which time is reckoned. All vessels keeptig Greenwleh tume clange the date one day etther backward or for
ward, acoording as they are moving east or west, in pasting the place where the longt tude is 180°.
At what place opposite the sun on the earth should
nobservation be taken to be tin a stralght line througr the center of the sun and the earth at the moment of erinellon, In order to estabilish a polnt in the heave of the earth's perihellon passage is given in astronomi cal almanacs ti Greenwich tme, and an observer who
wishes to be on thellne between the centers or the sun wishes to be on theline between the centers of the sun
and of the earchat that time must place himself on the
M. H. R. says: I have a large brick build
ag, bultit of common brtck, which $\underset{\text { In }}{\text { am now }}$ naving painted and penciled. Would you advise me to mix sy liquuld glass with the last coat of flat brick red, o to put on a coat of llyutd glas, atter the palnting an
penclling tis done? If the ligutd or soluble e plass makes apermanent covering, I thluk it would be a valuable addition to put on a last coat of tit, as otherwise ina
few years the oll drices tu and the red wwll rub of unles
 not thlnk the use of soluble glass would improve the
 Ing 18 n new one, it would be better to let it stand as
long as posible without palitug, to enable the walls to
P. D.-Theproblem of a boring bar being three explanationg: In by " obing out of true with the
lathe shears", 1 m mant that the bur t out of true as if in consequence of belng bent tu trs length, tt will bore up to the cutter. If the term "out of true with the lathe shears" means that allne d awn between the cen-
ters of the lathe will not be parallel, both horizontal: and perpendicularly, with the shears of the lathe, stlll cutter head feeds along the bari if, however, In this lat. ter case, the cylluder feds to the cut, the bore of the
cylloder will be oval. Boring bars with immovable headsare not, however, under any clrcumstances good twicethat of the length of the cylluder; hence they are ot so rigid, and are therefore more lisble to jar and only long enough to allow the head to pass through the
E. L. E. and others: A child is in the sec and so on. So that a man is in the twenty-81xth year of
hns age w hen he has completed twenty
twent years, tre
twenty
W. P. G. asks: Where can I get a copy of
the American Astronomical Ephemeris? A. At the Hy.
 on as appled, for a cooating on an EnglisL roonng felt ?
Would such a coating last, asy, wo or three years ? Gas ar ts sold here for eleven cents per gallon. Will th las

 we do not know of any objectlon to ts use. But they
charge you to much for It two cents per gallon enough.
G. W. S. asks. Is there any device for ta.
ting steam out of a boller by a tube and conveylng it under the grates of the freplace, to keep the fire down
when the engine is stoped? A. We do not know or nything of the kind.
C. asks: How can I blue gun work? A. a box. place over the fre and heat slowly. Put the
rticles to be bued in the ashes and as they heat up artlcees to be blued In the ashes; and as they heat up,
take out occasilonally to observe the color. When the color 19 a blue, do not take them out, but leave them
untll they have become white agaln, when they should e taken out and allowed to cool. By returntng the a ticles and re-heating. you will have the second blue long time.
H. D. A. asks: What is the correct weight
of cast iron balls of of s\% inches dlameter, made of hard on, such as is used for car wheels? A. Average welght,
Z. asks: How many lbs. of steam of

 Personal column will
our other questions.
H. H. H. asks: 1. Can an engine be made ng on top of al ordinary slide valve, by leng thentng or
hortening the cutort valve rod?
A. Yes. 2 . If so,
 as motion colincident with that of the piston.
W. C. asks: Will you please tell me the cylinders in a compound engine? A. The low pressuro cyinderis made from $2 / 2$ to 4 times as large as the high Is it diffcult to determine the horse power of a loco.
motte? A. It would be necessary to attach a dynamo. motve? A. It would be necessary to attach a dynamo-
meter to the locomotive, or to take tndicator dlagrams from the cyllnders.
printed every year, and can I J. B. says: I have seen it stated that, for
accurate shootiug, a muzzl soader beate a breech loader. Is thys the case? A. A good breech-loading rilie is
better than a muzzle loader
C. M. A. Says: 1. In a late number of your
paper you advises a correspondent, who wants to bulld a
 rig? A. SIngle sail with boom and sprit mast.
routd you bave the boat cllinkerbullt or cauls-seamed? A.Caulk-seamed. .3. How far from the bows should the
widest place je? A. From 8 th to 10 feet.
E. S. G. asks: In setting the valves on a
ocomotive engtine in which the inrow of her eccentrice had been changed from 5 to 5 In inches, I could not get Fhen hooked up on think the fault was. I laid it to gether. Inext set her hooked up to 133 inches. and found that at fullstroke, on the forward center, glving
her no lead and putting her on the back center, she was her no lead and putting her on the back center, she was
bilnd $1 / 4$ of an fnch. This was with the reverse lever In the forward motion,with the englne cold. The valver
have 11/a outside lap and $1 / 4$ Instide lap. When she went out, sne was square at full stroke. I told the foreman that the expansion had divided that $1 / 4$ Inch bilind, and
made her bllnd $1 /$ inch on each end. Was Irlght, and What is the reason we can get her square only at one
notch? Would the link lifters affect it any? They are
and very short. A. It is generally impossible to get equal
action of the valve at each end, on account of the angularity of the connecting rod, etc. A valve which is
tght when cold ts frequently verymuch out of adjust ment when steam is turned on. A trial with the ind 1 cator is the surest test, and in general the only on
B. W. says, in reply to W. H. M. L., as to eccelerating the maklug of good butter in warm weath Immediately after coming from the cow, the cream will
rise in four hours. If the temperature is kept at 54° without variation or agitation, ail the creann will come klog good butter is to remove the cream betore lactic actd commences to form. Hence the reason why farmers
who have mill houses stuated over caol spring ably make the best butter. A few years ago, business ears; and feellng the want of good, fresh butter, I a
rangeda bloct tin worm in a wash tub, with funnel upperpart, the lower end protruding through the side of the tub near the bottom. I filled the tub with ic pater, and as the milk came in palls from the cow
poured themilk through the worm, regulating the flow and temperature by pouring it in. I could run it off at
$5^{\circ} \circ$, and kept it so for one hour by setting the pan in ice Water, when the cream was removed and churned, ma king the "Slmon Pure." "Orange county"" milk will
keep one day longer without sourting by the same proW. H. W. says: In your issue of July 25, ern coast are very soon destroyed by worms. They
mIght be protected by metal sheathing, but that is too
expensive. Is there any method nd effective, of securing wood against the attacks nd effrective, of securing wood against the attacke of
these worms?" You add: " We ehall be glad to recelve ng with amorphous black lead paint will effectually f that paint than they would charcoal; only by an abrasion whtch shall lay bare the wood, is there any anger from the worm. The paint should be carefull made. wholly with raw linseed oll. Let each coat be
well worked on, and perfectly dry before a succeeding coat be put on; polish each coat gently with sand paper. Three or four coats of good palot, properly put on, will prevent any attack by the worms. This paint becomes ex
B. says, replying to the query of H. D. M. hold cider?" Steam the barreis by means of a plpe
from a boller tintroduced at the bung hole untll all the glueand dirt comes away, then wash once or twice with
scalding vinegar. The outside is of course to be cleaned with a brush and soap and water. Petroleum barrels leansed in this manner,and with wooden hoops and the usual plastered ends, are extensively used in Europe for C. B.I. says, in reply to J. A. J., who asked
how to kill house fies : Flila tumbler about half full of than the top of the glass about the size of a cent: then smear one side of the pastebard whin molasses or other sweet stuff, and tura It so that the molasses will be on the lower side, nearest on the outside of the pasteboard; and put it in the place frequented by the flles. In trying to get the mo-
lasses, they will tumble off and be drowned. You will soon have a tumbler full of fles.
B.C.asks: How can I meltsteel scraps in a
crucible, and have it retann the nature of steel? My experiments thus far, when the steel was melted and
poured into a sand mold, have produced castings of a poured into a sand mold, have produced castings of a
very poor kind of rotten white iron.-J. E. asks: How 1s the phosphorus light (which the Navy Department
have adopted) made?-D. C. G. asks: Why is it that some of the human teeth (most frequently the cuspids) have corrugations or rings around them, similar to cor-
rugations around the horns of cattle? ?-C. B. F. asks Will some one give me full instructions for making a ractog boat?

OOMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions \&pon the following subjects
On Feathered Arrow Heads. By C. J. II. On a Mechanics' Political Organization By V. T

On Davies' "Arithmetic." By L. H. S
On an Improved Furnace. By B. T. S
On a Mosquito Net. By L. E.
On Lightning Rods. By B. W
On Ice Machines. By J. W. H
On Aerial Navigation. By D.and by J.H.D Also enquiries and answers from the follow. ing
J.H.S.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the pa-
entability of inventions, assignments, etc. will not be published here. All such ques ions, when initials only are given, are thrown into the waste basket, as it would fill half of
our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Please to inform me where I can buy sheet lead, and the price Where can I purchase a good brick machine? Whose steam engine and boiler would you recommend? Which churn is consider you ecom? Wh Whath an I buy the best style of wing an I buy the best style of windmills?" Al such personal enquiries are printed,as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge menioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

[OFFICLAL.]
 Index of Inventions

qOR whice

Letters Patent of the United States

 July 21, 1874 ,
ind each bearing that date

Alloy to resemble silver, M. H. Campbell Amalgamator, ore, Kirk \& Ayer
Baking mold, G. Wingate Bale te, cotton, w. Coope
Bell, ca: I, S. G. Levey....
Bell, door, W. H. Nichols
Bett stretcher, G. E. Burt.
Belts, lactig, G. E. Burt
Blower, ro ary pressure, W. Pruett Booller covering, Irons \& Clayton..
Boller, wash, S. Whitnum
Book rack, self-adjusting,
Boot and shoe, J. L. Joyce........
Boot and shoe heel, H. H. Bigelo
Boot heels, making, McKay \& Falrtlel
Boot heels, compressing, H. H. Bigelo
Boot and shoe last, F. S. Prentice.
Boot tacking machine, Thompson \& Berg
Boot blaching machine, B. Palmer........ Bottle stopper, F. Schlit
Box, C. F. E. Blood
Six, C. e. E. Blood ...
Bracelet, C. E Haywar
Brlck machtne, ©. Boudriot.
Broom, aacklng, C.
C. Toll
Brush, R. Δ shworth
Bullets, groving, H .
Bung hole lock, H. Borchardt
Button fastener, G L. Robinson
Can for oul, etc., A. C. Stoessige
Can for shipping oils, etc., Moore \& Hickey.
Can, oll, Clayton \& Dobbtns..
Can opener, A. V. M. Sprague
Can opener, A. V. M. Sprague
Cannon, making rings for. J.
Car axle box, D. A. Hopkins
Car axle box, L. A. Perrot..
Car axle, rallway, H. H. Rhodes
Car brake, , C. C Taf
Car brake, S. C. Taf
Car coupling, F. A.
Car coupling, F. A. Aardiner.......
S. R. \& Z. M. Hibbar
Cur coupling, G W. Putnam.
Car coupling, C. Schnoor..
Car coupling, E. P. Terrell..
Car coupling, WilkInson et
Car, street, W. J. Wilson
Cars, apparatus for moving, E. Hedge
Carding machine doffer, H Holcroft.
Carrlage running gear, Herrinton \& Irlsh
Carriage shaft and pole, O. F. Van Marte
Carrlage wheel, T. Weaver
Carrirage shells, loadtng, L. A. Beardslee
Cellulotd molding, R. F. Hunt....
Cereals for food, L. S. Cbichester.
Chair fan. rocking, E. C. Hal
Charr, spring rocking. S. Fal
Children from falling, preventing, J. Koniggberg 153,
Chocolate, etc., preparing, Evan8 \& Dyson....
Churn, J. B. F. Dowell.
Churn, R. Murphy....
Cigar machine, W. J.
Clamp, floor, , W. Carillee............
Clamp, joiner's, C. S. Van Wagon
Clamp, stagtng, C. E. R1chards
Clothes wringer, b. Smith
Clutch, E. w. Kelly..
Cock, lock stop, J. Douglass...........
Column, wroaght iron, C. H. Kellogg
Cord, etc., making, W. H. Defrees
Corset steels. etc.,
Cotton, opeutog and cleaning, E. Geary, Jr......
Cotton seed huller, P. J. Martin..
Crib, chlld's, J. W. For
Cultivator, P. P. Hill
Cultivator, P. P. Hill .
Cental englne, N. Stow.
Dish. plckie, W. M. Kirc
Dish. pltckle, w. M. Kirchaner..
Door spring, C. s. Van Wago
Door spring, C. S. Van Wagoner
Draft productug apparatus, G.
Draft productug apparatus, G. Wingate
Dredging bucket, T. Symonds
Dredggng apparatus, hand, R...............
Drills, gharpenting twist, C. Van Haagen
Edge plane, P. Bauer....
Elevator, hay, A. J. Nellls
Elevators, safety stop for, Beving \& Wet
Enameled metal articles, G. A. Burroughs
Engine, compound, W. Baxter, Jr
Englne, rotary, L. W. McKenney
Eraser, E. Welessenborn................................
Evaporating dish, graduated, w. G. Dinwiddie
Fare box lamp ventilator, J. B. Slawson...
Fats, treating, F. J. Kraft.
Fence, wire, T. H. Speskman......
Fifth wheel for vehitcees. W. Fisher
 Fuitt jare, forming necks of, T. Hipwell......
Fusee, safety blazing, G. C. J. Snetder....
Game board, J. Butt.......
Gas making, W. Vincent..........
Gas motor engine, G. W. Daimier
Gas retort, closing, J. R. Smed.erg
Gate, farm, Molltor \& Renkert
Gear cuttung machine, J. A. Peer....
Generator, carbonic acld, O . Z wletu
Glue dryer, J. Barbanson..............
Grain cleaner and scourer, c. Custer.
Grain cleaner and scourer, w. W. Ingraham.
Grain scales, C. J. Paine.............................
Grapnel. J. B. T. Tosellf
Handcuff, Broome \& Woo
Harrow, S. Burgess.-
Harrow, A. B. Sples
Harvester, A. Jamison.
Hatchet, R. H. Morrison
Hats. de for shaping, D. Dennis
Heel lifts, etc., compressing, J. Ellison.

HInge for safe doors, P. F. K
Horse detacher, A. Barker....
Horse detacher, A. Barse power, J. S. Schotield.
Horse
Hydrault canal llt, E. Clas.
Hydraulic cannlint, E. Clark.............
Ice house for meat, etc., D. T. Conkilin.
nking aparatus, G. D. M
Iron, burnang, , C. P. Benoit.
Irontng board, R. Collins....
 mplack, making.J. H. BJttenberg and marker, S. Phillip
Latch, knob, D. Wolf
Lathe, H. Blckford
Lock, W. Baldw
Lock, H. WInn.
Lock seal,
Lock, seat, S. Wright.................
Lock, etc., hasp, c. F. Leopold....
Locomotive chimney
Locomotive chimney, G. W. Waitt..............
Locmotve wheels, raising, J. M. Farrington. Looking glass and photo, I. N. Shatto.. Looms, let-oft mechanism for, J. Msson,
Mandrel, expanding, H. P. Measure, adjustable llquud, J. P. Lettzell. Meter. Ilquild, F. A. Morle
Mill, cider, Whiteley et al., Mill, clder, H. L. Whitman (r)
Mill. rolling, Chaltant \& Hahn
Mitering machine, J. Jone
Mitten and glove, K. D. Bu
Molder's flask, J. McClure
Molding arttcles from pulp, J. R. Mo
Nasal douche M. F. Potte
Nozzle, E. R. Bristol.
Oll colors, coating paper with, Goth et Oil, trestyng cotton see
Ores, drying, R. Teats
erizing, Kirk \& Ayers
Organ, reed, R. Burdett .
Overalls, H. F. Woodward
ox yoke. J. Ernhout
Package tie, A. Mille
Paper box. R. Ritter
Paper folding machine, c. Chambers, Jr. (r)
Paper pulp wood grinder, F. A. Cushman
Paper, roller for winding,
'avement, C. Pinnington
Paving tiles, etc.., concre

Paving block, P . Zadig.
Pen extractor, O. Evans

Photographtc picture, S. F. Conant...
Pickaxes, forming eyes of, W. Andre
Pin, safety, J. Poznansk1.
Pipe, cement lined sheet met..............
Pipe, mold for earthen, J. H. Root.....
Pipe, mold f. Emery
Piston, C. E.
Plane, bench, G. M. T
Planing machine, metal, J. L. Hewes.
Planter, corn,
Plow, R. I Azbil
Press, clder, W. S. Dye
Press, clder, W. S. Dyer....
Press cotton. W. H. Walke
Press coto.
Press, cotton and hay. G. W. Grader
Press, hay and cotton. F. L. Kir
Printing press, C. Λ. Cadwell ...
Pump, steam, w. Atkinson
Pump, steam vacuum, J. R. McPherson
Pumps, operating, Smlth \& Jackson.......
Punches, etc., operatIng, C. H. Reynolds
Purfiler, middungs, willford et al
Radiator, steam, J. A. M11ler.
Raildrilling device, J. S. Lane
Rallroad rall joint, Shalters \& Ra
Rallroad switch, A. B. Edmands
Railroad switch, A. B. Edmand
Railroad switch, B. Plerre
Rake
Rake, horse hay, M. K. Flor
Ratlons, feed, W. H. Page (r)
Reffector, C. F. Jacobson..
Refrigerator, J.M. Blatsdell
Respiring apparatus, A. Gallbert.
Rooflug compositiou, G. Stetnemann (r)..
Sash fastener, L. Weston.
Sash holder, N. B. Bates..
Saw arbor, J. Torren
Saw mill, J. Brown...................
Saw mills, log turner for, s. Keller
Saw-setting anvil, M. Hitchcoc
Scaffold, F. H. D. Newhard
Scow, top dumping, T. Symond
Seeder, J. F. Keller
Seeding machine, J. H. Jones
Sewing machine, T. A. Weber
Sewing machnne, T. A. Weber.....
Sewing machne hemmer, R. Prtice
Shade holder, lamp, Merrill et al
Shatung, universal, T. Welham (r)
Sneet metal cap die, Mason \& Perr
Shirt bosom, J. H. Myer
Skate, rolltr, J. Fento

Spike extractor, M. Biglin...
Spla le, lubrricatlig, A. M.
Stalk cutter, E. P.
Stalk cutter, E. P. Lynch..

\section*{| 153,259 |
| :--- |
| 15295 |}

applications $\overrightarrow{\text { FOR EXTENSIONS. }}$
Appllcations hav; bey duly fled and are now pending
or the extension of the collowiog Letters Patent. Hearngs upon the respective applications are appolited fo

EXTENSIONS GRANTED.

 DISCLAIMERS.
29,30.-Stove Gratr.-D. H. Natlon.
29,333.-WATER WHELL -J. W. Truax

designs Patented

Meriden, Conn

TRADE MARES REGISTERED

Oo each Caveat... On each Trade Mark.........
On illing each application for a Patent (17 years). 815
On Issuing each original Patent....................820
appeal to Examiners-In-Chlef..................810

CANADIAN PATENTS.
Ligt of Patents Granted in Canada
July 21 то 25, 1874.
3, 590 - - w. E. Wright, Rome, Ouelda counts, N. T., U. S.

 July 21, 183 .

 3,992.-C. E. Seal, Winchester, Frederlck county, Va.,
U. S . Improvements on cut-of and regulating cocks, U. S. Improvements on cut.of and regulating cocks,
called "seal's Gas Cut-oft and Regulator." July 21 ,
called "Sea1's Gas Cut-off and Regulator." July 21 ,
3.634._-I. K. Macaulay, Kingston, Frontenac counts,
 chines. called "The star Brick Machine." July 25
1974.
cher

August 22, 1874.]

Fifth and Last Gift Concert Public Library of Kentacky,

November 30, 1874.

DRAWING CERTAIN AT THAT DATE.

I MPROVED PICTURE ROD MOULDING.

JUST PUBLISHED.

THE CHAMPION SILVER-STEEL

Civil and Mechanical Engineering at

The Ohilian Exposition

 Consul In the Unted states, or A. YILLAR CEL, Co
responding Agent, 52 Pine St., New York.
\$475 A MONTH TO AGEN'rs. Address C. M,
ININGTON \& BRo.,New York or Chicagoi

Cooper's Engine \& Mill Works First-Class Stationary Encines,

MAMOGANY,

Geo. W. Read \& Co.,
New York

BLARES STTEAM PUMP

MAGNETS-Permanent Steel Magnets

RISDON'S IMPROVED TURBINE.

$\$ 10$ to $\$ 1000$ Invoitedinstocisad gold pay

 RODE M'F'G Co.,

BLAKE'S PATENT Stone and Ore Breaker

A FORTUNE For ALL In the Rubber Stimit
 Tho Amorican Trarbin wator

To Electro-Platers. B A TTERIES, CAEMICALS, AND MATE

Ammicau.
Silinale AND BARREL MA MHINERY.

PORTABLE STEAM ENGINES, COMBIN,

Machinery,

Now

Sturtevant Blowers.

Cold Rolled Shafting.

 CEAS. B. HARDICE the Joh

THE Union Iron Mills, Pititaburgh, Pa.

 B ANKRUPT'S SALE OF HORIZONTAL
 A DAY. Employment for anl. Patent Nove
ties. GEO. L. FELTO N 119 Nassau SHINGLE \& BARREL MAGEINERY

E. M. MAYOS PAT. BOLT CUTTER. SCBENCK'S PATENT. 1871
1882.
WOODWORTH PLANERS

OLD ROLLED SHAFTING

 Trind

 Fold

WOOD WORIING MACHINERY

P. BLAISDELI \& CO.,

 New almproved ratterns.-MA. n.

Andrew's Patents.

 All ittstidimple Durable, and Rconomical.

> PATENT

Planing and Matching

The best and cheapest Paint in the World for Iron, Tin or Wood. For sale by
the Trade everywher PRINCE's METALLI
PAINT CO, Maunacturers, 96 Cedar St., New York.
 $\begin{aligned} & \text { bear our name and trade ma } \\ & \text { package. Send for a circular. }\end{aligned}$.
 W HETHER YOU WISH To BUY or SELL MACHINERY or
Write to E. E. ROBEKTN, 119 LibertySt., N.Y
WOR LEGAL ADVICE CONCERNING

An deutfdie Erffinder.

[^0]

 The Pants＇Stretcher．

SUMMER TRAVEL．
The season of business and pleasure travel betng now
at tits helght，we respectfully suggest the proprlety of

＂THE TRAVELERS＂
of Hartford，Conn．，the oldest and best Company in
America writung yearly or monthly pollcles of insurance against general accidents of bustness or occupation，a
＂THE TRAVELERS＂
also grants all forms of full Life and Endowment Insu
ance，and offers pecultar tuducements in to sensible all－cash plan，in its defnite，stralght－forward contract，
Its ample security，its low premiums and its gement．Jas．G．Batterison，President． RODNEY DENNIS，Secretar

PATENTS

The publishers of the Soicntific Ayrricin have
acted as solictors of patents in the United States and forelgn countries for more than a quarter of a cen．
tury．More than firt thousand inventors have avalied themselves of their services．All patents se cured through this agency recelve a special notice in the
Scientific American，which frequently attracts pur． chasers for the patent．
Inventions examined，and advice as to patentabillty free Patents obtained in the best manner，and with as itt－ Caveats prepared fro
filed in the Patent Office at short notice Special examinations as to the patentabilty of inven－ lons made，at the Patent Office，on recelpt of model or port， 85 ． Trade Marks．－The necessary papers for securing
protection to manufacturers and merchants in this country and abroad are prepared at this office． Design Patents，for protecting artists and dealgners obtained through this offle．
Copyrights obtalned．
Forelgn Patents are solicited in all countries where full particulars，malled on application．
Canads Patents．－Canada is one of the best countries
for patents．The cost depends upon the length of time or which a patent is desired．Full particulars by mall on application．
we shall be
thetr models and drawings，and advise with them as to obtaining patents without consultation fee．Every abroad cheerfully glven．
Send for pamphlet， 110 pages，containing lom
directions for obtaining patents．Addreas
MUNN \＆CO．，
Publishors SCIENTIFIC AMERICAN，

Asbestos Materials．

EくUエースーットゥ トOO」の

AMERICAN SAW CO TRENTON，N．J．
GREAT REDUCTION ix PRICES MOVABLEF－TOOTHED
CIRCULARSAWS． Send for new Price List．As
 plain，endaustic $\xrightarrow{M A S J N D}$

Mill FurnishingWorks

New Yons

＂THE EMERY GRINDER，＂

（1） 10

HOUSTON＇S PATENT
TURBINE WATER WHEEL

TO INVENTORS AND MANUFACTURERS

IRON PLANERS，

 WIRE ROPR，

Mactinists TOOLS， OFALL KINDS， N．Y．Steam Engine Co， 98 Chambers St．

Manufacturers．Syracuse，N．Y
 VACMNISIS OLS
 GTANDARD BRICK MACHINE－Made b

Rifles，shot Gilns，ReVolvers every kind．Scnd stamp for Illustrated Price List to
Great $\mathbf{W e s t e r n}$ GUN $\mathbf{W O R K}$ ，Pittoburgh， $\mathbf{P a}$ ． POR＇NAND CEMIEN＇ A Practical Treatise on Cemen turnished FRFR．
s．L．Merchant \＆Co． 6 Soutb St．．New York． Minemoer

DAVIS \＆DUBOIS

HARTFORD

STEAM BOILER
Inspection \＆Insurance COMPANY

Todd \＆Rafferty Machine Co．

SCIENTIFIC AMERICAN．
THE BEST MECHANICAL PAPER IN THE WORLD．
TWENT Y－NINT \dot{H} YEAR．
VOLUME XXXI．－NEW SERIES．
The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the fourt h day of July，1874，a ew volume commences．It will continue to be the alm
of the publishers to render the contents of the new volume more attractive and useful than any of its pre decessors．
The SCIENTIFIC AMERICAN Is devoted to the inter ests of Popular Sclence，the Mechanic Arts，Manufac trial pursults generally；and it is valuable and instruc Ive not only in the Workshop and Manufactory，but also
The best Mechanical Paper in the World ！
A year＇s numbers contatn over 800 pages and severa undred engravings of new machines，useful and novel

To the Mechanic and Manufacturer ！
No person engaged in any of the mechanical pursuit cAN．Every number contains from six to ten engraving of new machines and inventions which cannot be found in any other publication． TERMB．$^{\text {One copy，one year．．．．．．．．．．．．}}$
One copy，one year
One copy，six months．
One copy，four months
（hs．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.50
One copy of engraving＂Men for He year，and
ons
One copy of Sclentilic A merrican for one year，and
one copy of＂Sclence Record＂for 1844．．．．． 5.00
Remit by postal order，draft or express．
The postage on the Sclentific Amertcan is ive cent
per quarter，payableat the offlee where recelved．Can per quarter，payable at he o，with subscription， 25 cents
ada subscribers must remit，when extra to pay postage．

MUNN \＆CO
THE＂Scientific American＂，is printed with

[^0]: Biefe grofe und thätige ©laffe unfrcr $\mathfrak{B e}$ bölferung madjen wir befonders darauf aufmertjam, dá unfre sirma burd) ifre $\mathfrak{S e r}$. binbung mit $\mathfrak{B c}$ ¢5fington und ben curopäijd)en Dauptoädten, befondere Bortboile zur Erlar: gung bon in. unt ausländijden Fatenten bietet.
 Seber Erfinder, gleidbiel melder શationali. tät angebörig, ift burd) die liberalen Patentge feke ber Bereinigten ©taaten zam Batentidut für ©̧rfindungen beredtigt. Unfre Firma ift bereit, geftïß̧t auf 26jährige Erfalirung, Dcutidje Efrinder jcoer Seit zu berathen und zu mäßigen Preifen rafd) und piinttlid Patente zu erlangen
 Die Deutide Section if in ben §änden fäbiger beutider Sngenieure, welde in ber Dffice perfönlid mit Erfinbern berfehren werben.
 Der "Scientife American" wird in feinen Spalten bie bedeutenderen Erfindungen be \{predjen.

 Sorrefpondenz erbeten und prompt beant wortet. Bamphletp in beutidfer Spraje wer. Den auf $\mathfrak{B r r l a n g e n ~ f r a n c o ~ z u g e t ̣ a n d t ~}$

 5. sscientific American" Patent Agentur,

